I have a data table with nrow being around a million or two and ncol of about 200.
Each entry in a row has a coordinate associated with it.
Tiny portion of the d
Data generation:
N <- 1e5 # rows
M <- 200 # columns
W <- 10 # window size
set.seed(1)
intensities <- matrix(rnorm(N*M), nrow=N, ncol=M)
coords <- 8000000 + sort(sample(1:(5*N), N))
Original function with minor modifications I used for benchmarks:
doSlidingWindow <- function(intensities, coords, windsize) {
windHalfSize <- ceiling(windsize/2)
### whole range inds
RANGE <- integer(max(coords)+windsize)
RANGE[coords] <- c(1:length(coords)[1])
### get indices of rows falling in each window
### NOTE: Each elements of WINDOWINDS holds zero. Not a big problem though.
WINDOWINDS <- sapply(coords, function(crds) ret <- unique(RANGE[(crds-windHalfSize):(crds+windHalfSize)]))
### do windowing
wind_ints <- intensities
wind_ints[] <- 0
for(i in 1:length(coords)) {
# CORRECTION: When it's only one row in window there was a trouble
wind_ints[i,] <- apply(matrix(intensities[WINDOWINDS[[i]],], ncol=ncol(intensities)), 2, mean)
}
return(wind_ints)
}
POSSIBLE SOLUTIONS:
1) data.table
data.table
is known to be fast with subsetting, but this page (and other related to sliding window) suggests, that this is not the case. Indeed, data.table
code is elegant, but unfortunately very slow:
require(data.table)
require(plyr)
dt <- data.table(coords, intensities)
setkey(dt, coords)
aaply(1:N, 1, function(i) dt[WINDOWINDS[[i]], sapply(.SD,mean), .SDcols=2:(M+1)])
2) foreach+doSNOW
Basic routine is easy to run in parallel, so, we can benefit from it:
require(doSNOW)
doSlidingWindow2 <- function(intensities, coords, windsize) {
NC <- 2 # number of nodes in cluster
cl <- makeCluster(rep("localhost", NC), type="SOCK")
registerDoSNOW(cl)
N <- ncol(intensities) # total number of columns
chunk <- ceiling(N/NC) # number of columns send to the single node
result <- foreach(i=1:NC, .combine=cbind, .export=c("doSlidingWindow")) %dopar% {
start <- (i-1)*chunk+1
end <- ifelse(i!=NC, i*chunk, N)
doSlidingWindow(intensities[,start:end], coords, windsize)
}
stopCluster(cl)
return (result)
}
Benchmark shows notable speed-up on my Dual-Core processor:
system.time(res <- doSlidingWindow(intensities, coords, W))
# user system elapsed
# 306.259 0.204 307.770
system.time(res2 <- doSlidingWindow2(intensities, coords, W))
# user system elapsed
# 1.377 1.364 177.223
all.equal(res, res2, check.attributes=FALSE)
# [1] TRUE
3) Rcpp
Yes, I know you asked "without going to C". But, please, take a look. This code is inline and rather straightforward:
require(Rcpp)
require(inline)
doSlidingWindow3 <- cxxfunction(signature(intens="matrix", crds="numeric", wsize="numeric"), plugin="Rcpp", body='
#include
Rcpp::NumericMatrix intensities(intens);
const int N = intensities.nrow();
const int M = intensities.ncol();
Rcpp::NumericMatrix wind_ints(N, M);
std::vector coords = as< std::vector >(crds);
int windsize = ceil(as(wsize)/2);
for(int i=0; i(N-1)?(N-1):(i+windsize);
while(coords[end]>(coords[i]+windsize)) --end;
for(int j=0; j
Benchmark:
system.time(res <- doSlidingWindow(intensities, coords, W))
# user system elapsed
# 306.259 0.204 307.770
system.time(res3 <- doSlidingWindow3(intensities, coords, W))
# user system elapsed
# 0.328 0.020 0.351
all.equal(res, res3, check.attributes=FALSE)
# [1] TRUE
I hope results are quite motivating. While data fits in memory Rcpp
version is pretty fast. Say, with N <- 1e6
and M <-100
I got:
user system elapsed
2.873 0.076 2.951
Naturally, after R starts using swap everything slows down. With really large data that doesn't fit in memory you should consider sqldf
, ff
or bigmemory
.