Remove background text and noise from an image using image processing with OpenCV

前端 未结 3 1824
北海茫月
北海茫月 2021-02-08 18:08

I have these images

For which I want to remove the text in the background. Only the captcha characters should remain(i.e K6PwKA, YabVzu).

3条回答
  •  北海茫月
    2021-02-08 18:39

    Your code produces better results than this. Here, I set a threshold for upperb and lowerb values based on histogram CDF values and a threshold. Press ESC button to get next image.

    This code is unnecessarily complex and needs to be optimized in various ways. Code can be reordered to skip some steps. I kept it as some parts may help others. Some existing noise can be removed by keeping contour with area above certain threshold. Any suggestions on other noise reduction method is welcome.

    Similar easier code for getting 4 corner points for perspective transform can be found here,

    Accurate corners detection?

    Code Description:

    • Original Image
    • Median Filter (Noise Removal and ROI Identification)
    • OTSU Thresholding
    • Invert Image
    • Use Inverted Black and White Image as Mask to keep mostly ROI part of original image
    • Dilation for largest Contour finding
    • Mark the ROI by drawing rectangle and corner points in original image

    • Straighten the ROI and extract it

    • Median Filter
    • OTSU Thresholding
    • Invert Image for mask
    • Mask the straight image to remove most noise further to text
    • In Range is used with lowerb and upperb values from histogram cdf as mentioned above to further reduce noise
    • Maybe eroding the image at this step will produce somewhat acceptable result. Instead here that image is dilated again and used as a mask to get less noisy ROI from perspective transformed image.

    Code:

    ## Press ESC button to get next image
    
    import cv2
    import cv2 as cv
    import numpy as np
    
    
    frame = cv2.imread('extra/c1.png')
    #frame = cv2.imread('extra/c2.png')
    
    
    ## keeping a copy of original
    print(frame.shape)
    original_frame = frame.copy()
    original_frame2 = frame.copy()
    
    
    ## Show the original image
    winName = 'Original'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    
    ## Apply median blur
    frame = cv2.medianBlur(frame,9)
    
    
    ## Show the original image
    winName = 'Median Blur'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    #kernel = np.ones((5,5),np.uint8)
    #frame = cv2.dilate(frame,kernel,iterations = 1)
    
    
    
    # Otsu's thresholding
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    ret2,thresh_n = cv.threshold(frame,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
    frame = thresh_n
    
    
    ## Show the original image
    winName = 'Otsu Thresholding'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    
    
    ## invert color
    frame = cv2.bitwise_not(frame)
    
    ## Show the original image
    winName = 'Invert Image'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    ## Dilate image
    kernel = np.ones((5,5),np.uint8)
    frame = cv2.dilate(frame,kernel,iterations = 1)
    
    
    ##
    ## Show the original image
    winName = 'SUB'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    img_gray = cv2.cvtColor(original_frame, cv2.COLOR_BGR2GRAY)
    cv.imshow(winName, img_gray & frame)
    cv.waitKey(0)
    
    
    ## Show the original image
    winName = 'Dilate Image'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    ## Get largest contour from contours
    contours, hierarchy = cv2.findContours(frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
    
    ## Get minimum area rectangle and corner points
    rect = cv2.minAreaRect(max(contours, key = cv2.contourArea))
    print(rect)
    box = cv2.boxPoints(rect)
    print(box)
    
    
    ## Sorted points by x and y
    ## Not used in this code
    print(sorted(box , key=lambda k: [k[0], k[1]]))
    
    
    
    ## draw anchor points on corner
    frame = original_frame.copy()
    z = 6
    for b in box:
        cv2.circle(frame, tuple(b), z, 255, -1)
    
    
    ## show original image with corners
    box2 = np.int0(box)
    cv2.drawContours(frame,[box2],0,(0,0,255), 2)
    cv2.imshow('Detected Corners',frame)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    
    
    ## https://stackoverflow.com/questions/11627362/how-to-straighten-a-rotated-rectangle-area-of-an-image-using-opencv-in-python
    def subimage(image, center, theta, width, height):
       shape = ( image.shape[1], image.shape[0] ) # cv2.warpAffine expects shape in (length, height)
    
       matrix = cv2.getRotationMatrix2D( center=center, angle=theta, scale=1 )
       image = cv2.warpAffine( src=image, M=matrix, dsize=shape )
    
       x = int(center[0] - width / 2)
       y = int(center[1] - height / 2)
    
       image = image[ y:y+height, x:x+width ]
    
       return image
    
    
    
    ## Show the original image
    winName = 'Dilate Image'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    
    
    ## use the calculated rectangle attributes to rotate and extract it
    frame = subimage(original_frame, center=rect[0], theta=int(rect[2]), width=int(rect[1][0]), height=int(rect[1][1]))
    original_frame = frame.copy()
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    perspective_transformed_image = frame.copy()
    
    
    
    ## Apply median blur
    frame = cv2.medianBlur(frame,11)
    
    
    ## Show the original image
    winName = 'Median Blur'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    #kernel = np.ones((5,5),np.uint8)
    #frame = cv2.dilate(frame,kernel,iterations = 1)
    
    
    
    # Otsu's thresholding
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    ret2,thresh_n = cv.threshold(frame,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
    frame = thresh_n
    
    
    ## Show the original image
    winName = 'Otsu Thresholding'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    
    ## invert color
    frame = cv2.bitwise_not(frame)
    
    ## Show the original image
    winName = 'Invert Image'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    ## Dilate image
    kernel = np.ones((5,5),np.uint8)
    frame = cv2.dilate(frame,kernel,iterations = 1)
    
    ##
    ## Show the original image
    winName = 'SUB'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    img_gray = cv2.cvtColor(original_frame, cv2.COLOR_BGR2GRAY)
    frame = img_gray & frame
    frame[np.where(frame==0)] = 255
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    
    
    
    hist,bins = np.histogram(frame.flatten(),256,[0,256])
    
    cdf = hist.cumsum()
    cdf_normalized = cdf * hist.max()/ cdf.max()
    print(cdf)
    print(cdf_normalized)
    hist_image = frame.copy()
    
    
    
    
    ## two decresing range algorithm
    low_index = -1
    for i in range(0, 256):
       if cdf[i] > 0:
          low_index = i
          break
    print(low_index)
    
    tol = 0
    tol_limit = 20
    broken_index = -1
    past_val = cdf[low_index] - cdf[low_index + 1]
    for i in range(low_index + 1, 255):
       cur_val = cdf[i] - cdf[i+1]
       if tol > tol_limit:
          broken_index = i
          break
       if cur_val < past_val:
          tol += 1
       past_val = cur_val
    
    print(broken_index)
    
    
    
    
    ##
    lower = min(frame.flatten())
    upper = max(frame.flatten())
    print(min(frame.flatten()))
    print(max(frame.flatten()))
    
    #img_rgb_inrange = cv2.inRange(frame_HSV, np.array([lower,lower,lower]), np.array([upper,upper,upper]))
    img_rgb_inrange = cv2.inRange(frame, (low_index), (broken_index))
    neg_rgb_image = ~img_rgb_inrange
    ## Show the original image
    winName = 'Final'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, neg_rgb_image)
    cv.waitKey(0)
    
    
    kernel = np.ones((3,3),np.uint8)
    frame = cv2.erode(neg_rgb_image,kernel,iterations = 1)
    winName = 'Final Dilate'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    #cv.resizeWindow(winName, 800, 800)
    cv.imshow(winName, frame)
    cv.waitKey(0)
    
    
    ##
    winName = 'Final Subtracted'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    img2 = np.zeros_like(perspective_transformed_image)
    img2[:,:,0] = frame
    img2[:,:,1] = frame
    img2[:,:,2] = frame
    frame = img2
    cv.imshow(winName, perspective_transformed_image | frame)
    cv.waitKey(0)
    
    
    ##
    import matplotlib.pyplot as plt
    plt.plot(cdf_normalized, color = 'b')
    plt.hist(hist_image.flatten(),256,[0,256], color = 'r')
    plt.xlim([0,256])
    plt.legend(('cdf','histogram'), loc = 'upper left')
    plt.show()
    

    1. Median Filter:

    2. OTSU Threshold:

    3. Invert:

    4. Inverted Image Dilation:

    5. Extract by Masking:

    6. ROI points for transform:

    7. Perspective Corrected Image:

    8. Median Blur:

    9. OTSU Threshold:

    10. Inverted Image:

    11. ROI Extraction:

    12. Clamping:

    13. Dilation:

    14. Final ROI:

    15. Histogram plot of step 11 image:

提交回复
热议问题