Stretching out an array

后端 未结 3 1785
梦谈多话
梦谈多话 2021-02-08 11:03

I\'ve got a vector of samples that form a curve. Let\'s imagine there are 1000 points in it. If I want to stretch it to fill 1500 points, what is the simplest algorithm that g

3条回答
  •  梦毁少年i
    2021-02-08 11:34

    Here's C++ for linear and quadratic interpolation.
    interp1( 5.3, a, n ) is a[5] + .3 * (a[6] - a[5]), .3 of the way from a[5] to a[6];
    interp1array( a, 1000, b, 1500 ) would stretch a to b.
    interp2( 5.3, a, n ) draws a parabola through the 3 nearest points a[4] a[5] a[6]: smoother than interp1 but still fast.
    (Splines use 4 nearest points, smoother yet; if you read python, see basic-spline-interpolation-in-a-few-lines-of-numpy.

    // linear, quadratic interpolation in arrays
    // from interpol.py denis 2010-07-23 July
    
    #include 
    #include 
    
        // linear interpolate x in an array
    // inline
    float interp1( float x, float a[], int n )
    {
        if( x <= 0 )  return a[0];
        if( x >= n - 1 )  return a[n-1];
        int j = int(x);
        return a[j] + (x - j) * (a[j+1] - a[j]);
    }
    
        // linear interpolate array a[] -> array b[]
    void inter1parray( float a[], int n, float b[], int m )
    {
        float step = float( n - 1 ) / (m - 1);
        for( int j = 0; j < m; j ++ ){
            b[j] = interp1( j*step, a, n );
        }
    }
    
    //..............................................................................
        // parabola through 3 points, -1 < x < 1
    float parabola( float x, float f_1, float f0, float f1 )
    {
        if( x <= -1 )  return f_1; 
        if( x >= 1 )  return f1; 
        float l = f0 - x * (f_1 - f0);
        float r = f0 + x * (f1 - f0);
        return (l + r + x * (r - l)) / 2;
    }
    
        // quadratic interpolate x in an array
    float interp2( float x, float a[], int n )
    {
        if( x <= .5  ||  x >= n - 1.5 )
            return interp1( x, a, n );
        int j = int( x + .5 );
        float t = 2 * (x - j);  // -1 .. 1
        return parabola( t, (a[j-1] + a[j]) / 2, a[j], (a[j] + a[j+1]) / 2 );
    }
    
        // quadratic interpolate array a[] -> array b[]
    void interp2array( float a[], int n, float b[], int m )
    {
        float step = float( n - 1 ) / (m - 1);
        for( int j = 0; j < m; j ++ ){
            b[j] = interp2( j*step, a, n );
        }
    }
    
    int main( int argc, char* argv[] )
    {
            // a.out [n m] --
        int n = 10, m = 100;
        int *ns[] = { &n, &m, 0 },
            **np = ns;
        char* arg;
        for( argv ++;  (arg = *argv) && *np;  argv ++, np ++ )
            **np = atoi( arg );
        printf( "n: %d  m: %d\n", n, m );
    
        float a[n], b[m];
        for( int j = 0; j < n; j ++ ){
            a[j] = j * j;
        }
        interp2array( a, n, b, m );  // a[] -> b[]
    
        for( int j = 0; j < m; j ++ ){
            printf( "%.1f ", b[j] );
        }
        printf( "\n" );
    }
    

提交回复
热议问题