This is perhaps a silly question.
I\'m trying to fit data to a very strange PDF using MCMC evaluation in PyMC. For this example I just want to figure out how to fit to a
An easy way is to use the stochastic decorator:
import pymc as mc
import numpy as np
data = np.random.normal(-200,15,size=1000)
mean = mc.Uniform('mean', lower=min(data), upper=max(data))
std_dev = mc.Uniform('std_dev', lower=0, upper=50)
@mc.stochastic(observed=True)
def custom_stochastic(value=data, mean=mean, std_dev=std_dev):
return np.sum(-np.log(std_dev) - 0.5*np.log(2) -
0.5*np.log(np.pi) -
(value-mean)**2 / (2*(std_dev**2)))
model = mc.MCMC([mean,std_dev,custom_stochastic])
model.sample(iter=5000)
print "!"
print(model.stats()['mean']['mean'])
print(model.stats()['std_dev']['mean'])
Note that my custom_stochastic function returns the log likelihood, not the likelihood, and that it is the log likelihood for the entire sample.
There are a few other ways to create custom stochastic nodes. This doc gives more details, and this gist contains an example using pymc.Stochastic to create a node with a kernel density estimator.