I have a lambda function that writes metrics to Cloudwatch. While, it writes metrics, It generates some logs in a log-group.
INFO:: username: simran+test@abc.co
You can get what you want using CloudWatch Logs Insights.
You would use start_query
and get_query_results
APIs: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/logs.html
To start a query you would use (for use case 2 from your question, 1 and 3 are similar):
import boto3
from datetime import datetime, timedelta
import time
client = boto3.client('logs')
query = "fields @timestamp, @message | parse @message \"username: * ClinicID: * nodename: *\" as username, ClinicID, nodename | filter ClinicID = 7667 and username='simran+test@abc.com'"
log_group = '/aws/lambda/NAME_OF_YOUR_LAMBDA_FUNCTION'
start_query_response = client.start_query(
logGroupName=log_group,
startTime=int((datetime.today() - timedelta(hours=5)).timestamp()),
endTime=int(datetime.now().timestamp()),
queryString=query,
)
query_id = start_query_response['queryId']
response = None
while response == None or response['status'] == 'Running':
print('Waiting for query to complete ...')
time.sleep(1)
response = client.get_query_results(
queryId=query_id
)
Response will contain your data in this format (plus some metadata):
{
'results': [
[
{
'field': '@timestamp',
'value': '2019-12-09 17:07:24.428'
},
{
'field': '@message',
'value': 'username: simran+test@abc.com ClinicID: 7667 nodename: MacBook-Pro-2.local\n'
},
{
'field': 'username',
'value': 'simran+test@abc.com'
},
{
'field': 'ClinicID',
'value': '7667'
},
{
'field': 'nodename',
'value': 'MacBook-Pro-2.local\n'
}
]
]
}