I am considering the design of a Cassandra cluster.
The use case would be storing large rows of tiny samples for time series data (using KairosDB), data will be almost i
I haven't used KairosDB, but if it gives you some control over how Cassandra is used, you could look into a few things:
See if you can use incremental repairs instead of full repairs. Since your data is an immutable time series, you won't often need to repair old SSTables, so incremental repairs would just repair recent data.
Archive old data in a different keyspace, and only repair that keyspace infrequently such as when there is a topology change. For routine repairs, only repair the "hot" keyspace you use for recent data.
Experiment with using a different compaction strategy, perhaps DateTiered. This might reduce the amount of time spent on compaction since it would spend less time compacting old data.
There are other repair options that might help, for example I've found the the -local option speeds up repairs significantly if you are running multiple data centers. Or perhaps you could run limited repairs more frequently rather than performance killing full repairs on everything.
I have some Cassandra clusters that use RAID5. This has worked fine so far, but if two disks in the array fail then the node becomes unusable since writes to the array are disabled. Then someone must manually intervene to fix the failed disks or remove the node from the cluster. If you have a lot of nodes, then disk failures will be a fairly common occurrence.
If no one gives you an answer about running 20 TB nodes, I'd suggest running some experiments on your own dataset. Set up a single 20 TB node and fill it with your data. As you fill it, monitor the write throughput and see if there are intolerable drops in throughput when compactions happen, and at how many TB it becomes intolerable. Then have an empty 20 TB node join the cluster and run a full repair on the new node and see how long it takes to migrate its half of the dataset to it. This would give you an idea of how long it would take to replace a failed node in your cluster.
Hope that helps.