I am looking to count the number of times the values in an array change in polarity (EDIT: Number of times the values in an array cross zero).
Suppose I have an array:<
This produces the same result:
import numpy as np
my_array = np.array([80.6, 120.8, -115.6, -76.1, 131.3, 105.1, 138.4, -81.3, -95.3,
89.2, -154.1, 121.4, -85.1, 96.8, 68.2])
((my_array[:-1] * my_array[1:]) < 0).sum()
gives:
8
and seems to be the fastest solution:
%timeit ((my_array[:-1] * my_array[1:]) < 0).sum()
100000 loops, best of 3: 11.6 µs per loop
Compared to the fastest so far:
%timeit (np.diff(np.sign(my_array)) != 0).sum()
10000 loops, best of 3: 22.2 µs per loop
Also for larger arrays:
big = np.random.randint(-10, 10, size=10000000)
this:
%timeit ((big[:-1] * big[1:]) < 0).sum()
10 loops, best of 3: 62.1 ms per loop
vs:
%timeit (np.diff(np.sign(big)) != 0).sum()
1 loops, best of 3: 97.6 ms per loop