PySpark 1.5 How to Truncate Timestamp to Nearest Minute from seconds

后端 未结 4 1264
予麋鹿
予麋鹿 2021-02-07 21:11

I am using PySpark. I have a column (\'dt\') in a dataframe (\'canon_evt\') that this a timestamp. I am trying to remove seconds from a DateTime value. It is originally read in

4条回答
  •  终归单人心
    2021-02-07 21:59

    Converting to Unix timestamps and basic arithmetics should to the trick:

    from pyspark.sql import Row
    from pyspark.sql.functions import col, unix_timestamp, round
    
    df = sc.parallelize([
        Row(dt='1970-01-01 00:00:00'),
        Row(dt='2015-09-16 05:39:46'),
        Row(dt='2015-09-16 05:40:46'),
        Row(dt='2016-03-05 02:00:10'),
    ]).toDF()
    
    
    ## unix_timestamp converts string to Unix timestamp (bigint / long)
    ## in seconds. Divide by 60, round, multiply by 60 and cast
    ## should work just fine.
    ## 
    dt_truncated = ((round(unix_timestamp(col("dt")) / 60) * 60)
        .cast("timestamp"))
    
    df.withColumn("dt_truncated", dt_truncated).show(10, False)
    ## +-------------------+---------------------+
    ## |dt                 |dt_truncated         |
    ## +-------------------+---------------------+
    ## |1970-01-01 00:00:00|1970-01-01 00:00:00.0|
    ## |2015-09-16 05:39:46|2015-09-16 05:40:00.0|
    ## |2015-09-16 05:40:46|2015-09-16 05:41:00.0|
    ## |2016-03-05 02:00:10|2016-03-05 02:00:00.0|
    ## +-------------------+---------------------+
    

提交回复
热议问题