Missing values in Time Series in python

后端 未结 4 1732
暗喜
暗喜 2021-02-07 20:42

I have a time series dataframe, the dataframe is quite big and contain some missing values in the 2 columns(\'Humidity\' and \'Pressure\'). I would like to impute this missing v

4条回答
  •  甜味超标
    2021-02-07 21:14

    Consider interpolate (Series - DataFrame). This example shows how to fill gaps of any size with a straight line:

    df = pd.DataFrame({'date': pd.date_range(start='2013-01-01', periods=10, freq='H'), 'value': range(10)})
    df.loc[2:3, 'value'] = np.nan
    df.loc[6, 'value'] = np.nan
    df
                     date  value
    0 2013-01-01 00:00:00    0.0
    1 2013-01-01 01:00:00    1.0
    2 2013-01-01 02:00:00    NaN
    3 2013-01-01 03:00:00    NaN
    4 2013-01-01 04:00:00    4.0
    5 2013-01-01 05:00:00    5.0
    6 2013-01-01 06:00:00    NaN
    7 2013-01-01 07:00:00    7.0
    8 2013-01-01 08:00:00    8.0
    9 2013-01-01 09:00:00    9.0
    
    df['value'].interpolate(method='linear', inplace=True)
                     date  value
    0 2013-01-01 00:00:00    0.0
    1 2013-01-01 01:00:00    1.0
    2 2013-01-01 02:00:00    2.0
    3 2013-01-01 03:00:00    3.0
    4 2013-01-01 04:00:00    4.0
    5 2013-01-01 05:00:00    5.0
    6 2013-01-01 06:00:00    6.0
    7 2013-01-01 07:00:00    7.0
    8 2013-01-01 08:00:00    8.0
    9 2013-01-01 09:00:00    9.0
    

提交回复
热议问题