Trying to run a simple GraphFrame example using pyspark.
spark version : 2.0
graphframe version : 0.2.0
I am able to import graphframes in Jupyter:
Depending on your spark version, all you have to do is download the graphframe jar corresponding to your version of spark here https://spark-packages.org/package/graphframes/graphframes.
Then you'll have to copy the jar downloaded to your spark jar directory
root@93d8398b53f2:/usr/local/spark/jars# wget http://dl.bintray.com/spark-packages/maven/graphframes/graphframes/0.3.0-spark2.0-s_2.11/graphframes-0.3.0-spark2.0-s_2.11.jar
There's the little tric right here, launch pyspark with arguments for the first time so that it downloads all the graphframe's jars dependencies:
root@93d8398b53f2:/usr/local/spark/bin# pyspark --packages graphframes:graphframes:0.3.0-spark2.0-s_2.11 --jars graphframes-0.3.0-spark2.0-s_2.11.jar
This should come up:
Ivy Default Cache set to: /root/.ivy2/cache
The jars for the packages stored in: /root/.ivy2/jars
:: loading settings :: url = jar:file:/usr/local/spark-2.0.0-bin-hadoop2.7/jars/ivy-2.4.0.jar!/org/apache/ivy/core/settings/ivysettings.xml
graphframes#graphframes added as a dependency
:: resolving dependencies :: org.apache.spark#spark-submit-parent;1.0
confs: [default]
found graphframes#graphframes;0.3.0-spark2.0-s_2.11 in spark-packages
found com.typesafe.scala-logging#scala-logging-api_2.11;2.1.2 in central
found com.typesafe.scala-logging#scala-logging-slf4j_2.11;2.1.2 in central
found org.scala-lang#scala-reflect;2.11.0 in central
found org.slf4j#slf4j-api;1.7.7 in central
downloading http://dl.bintray.com/spark-packages/maven/graphframes/graphframes/0.3.0-spark2.0-s_2.11/graphframes-0.3.0-spark2.0-s_2.11.jar ...
[SUCCESSFUL ] graphframes#graphframes;0.3.0-spark2.0-s_2.11!graphframes.jar (269ms)
downloading https://repo1.maven.org/maven2/com/typesafe/scala-logging/scala-logging-api_2.11/2.1.2/scala-logging-api_2.11-2.1.2.jar ...
[SUCCESSFUL ] com.typesafe.scala-logging#scala-logging-api_2.11;2.1.2!scala-logging-api_2.11.jar (53ms)
downloading https://repo1.maven.org/maven2/com/typesafe/scala-logging/scala-logging-slf4j_2.11/2.1.2/scala-logging-slf4j_2.11-2.1.2.jar ...
[SUCCESSFUL ] com.typesafe.scala-logging#scala-logging-slf4j_2.11;2.1.2!scala-logging-slf4j_2.11.jar (66ms)
downloading https://repo1.maven.org/maven2/org/scala-lang/scala-reflect/2.11.0/scala-reflect-2.11.0.jar ...
[SUCCESSFUL ] org.scala-lang#scala-reflect;2.11.0!scala-reflect.jar (1409ms)
downloading https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.7.7/slf4j-api-1.7.7.jar ...
[SUCCESSFUL ] org.slf4j#slf4j-api;1.7.7!slf4j-api.jar (53ms)
:: resolution report :: resolve 6161ms :: artifacts dl 1877ms
:: modules in use:
com.typesafe.scala-logging#scala-logging-api_2.11;2.1.2 from central in [default]
com.typesafe.scala-logging#scala-logging-slf4j_2.11;2.1.2 from central in [default]
graphframes#graphframes;0.3.0-spark2.0-s_2.11 from spark-packages in [default]
org.scala-lang#scala-reflect;2.11.0 from central in [default]
org.slf4j#slf4j-api;1.7.7 from central in [default]
---------------------------------------------------------------------
| | modules || artifacts |
| conf | number| search|dwnlded|evicted|| number|dwnlded|
---------------------------------------------------------------------
| default | 5 | 5 | 5 | 0 || 5 | 5 |
---------------------------------------------------------------------
:: retrieving :: org.apache.spark#spark-submit-parent
confs: [default]
5 artifacts copied, 0 already retrieved (4713kB/39ms)
Warning: Local jar /usr/local/spark-2.0.0-bin-hadoop2.7/bin/graphframes-0.3.0-spark2.0-s_2.11.jar does not exist, skipping.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
16/11/17 15:43:51 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/11/17 15:43:54 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.0.0
/_/
Using Python version 2.7.12 (default, Jul 2 2016 17:42:40)
SparkSession available as 'spark'.
>>>
Meaning it has downloaded all the dependencies required. The important thing right here is Ivy Default Cache set to: /root/.ivy2/cache, precisely the jars stored in /root/.ivy2/jars
You can exit right after, if you insist in proceeding with the python code calling GraphFrame, it will call the error:
Py4JJavaError: An error occurred while calling o561.newInstance.
: java.lang.NoClassDefFoundError: Could not initialize class org.graphframes.GraphFrame.
Let's see what's inside the directory /root/.ivy2/jars:
root@93d8398b53f2:/usr/local/spark/bin# ls /root/.ivy2/jars/
com.typesafe.scala-logging_scala-logging-api_2.11-2.1.2.jar com.typesafe.scala-logging_scala-logging-slf4j_2.11-2.1.2.jar graphframes_graphframes-0.3.0-spark2.0-s_2.11.jar org.scala-lang_scala-reflect-2.11.0.jar org.slf4j_slf4j-api-1.7.7.jar
Now you'll want to copy all the jars appearing in /root/.ivy2/jars to your spark's jars directory:
root@93d8398b53f2:/usr/local/spark/jars# cp /root/.ivy2/jars/* .
Launch pyspark for the second time:
root@93d8398b53f2:/usr/local/spark/jars# pyspark --packages graphframes:graphframes:0.3.0-spark2.0-s_2.11 --jars graphframes-0.3.0-spark2.0-s_2.11.jar
This should come up:
Ivy Default Cache set to: /root/.ivy2/cache
The jars for the packages stored in: /root/.ivy2/jars
:: loading settings :: url = jar:file:/usr/local/spark-2.0.0-bin-hadoop2.7/jars/ivy-2.4.0.jar!/org/apache/ivy/core/settings/ivysettings.xml
graphframes#graphframes added as a dependency
:: resolving dependencies :: org.apache.spark#spark-submit-parent;1.0
confs: [default]
found graphframes#graphframes;0.3.0-spark2.0-s_2.11 in spark-packages
found com.typesafe.scala-logging#scala-logging-api_2.11;2.1.2 in central
found com.typesafe.scala-logging#scala-logging-slf4j_2.11;2.1.2 in central
found org.scala-lang#scala-reflect;2.11.0 in central
found org.slf4j#slf4j-api;1.7.7 in central
:: resolution report :: resolve 748ms :: artifacts dl 27ms
:: modules in use:
com.typesafe.scala-logging#scala-logging-api_2.11;2.1.2 from central in [default]
com.typesafe.scala-logging#scala-logging-slf4j_2.11;2.1.2 from central in [default]
graphframes#graphframes;0.3.0-spark2.0-s_2.11 from spark-packages in [default]
org.scala-lang#scala-reflect;2.11.0 from central in [default]
org.slf4j#slf4j-api;1.7.7 from central in [default]
---------------------------------------------------------------------
| | modules || artifacts |
| conf | number| search|dwnlded|evicted|| number|dwnlded|
---------------------------------------------------------------------
| default | 5 | 0 | 0 | 0 || 5 | 0 |
---------------------------------------------------------------------
:: retrieving :: org.apache.spark#spark-submit-parent
confs: [default]
0 artifacts copied, 5 already retrieved (0kB/24ms)
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
16/11/17 15:53:01 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/11/17 15:53:03 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.0.0
/_/
Using Python version 2.7.12 (default, Jul 2 2016 17:42:40)
SparkSession available as 'spark'.
>>>
You can now enjoy GraphFrame:
>>> # Create an Edge DataFrame with "src" and "dst" columns
... e = sqlContext.createDataFrame([
... ("a", "b", "friend"),
... ("b", "c", "follow"),
... ("c", "b", "follow"),
... ], ["src", "dst", "relationship"])
>>> # Create a GraphFrame
... from graphframes import *
>>> g = GraphFrame(v, e)
>>>
>>> # Query: Get in-degree of each vertex.
... g.inDegrees.show()
+---+--------+
| id|inDegree|
+---+--------+
| c| 1|
| b| 2|
+---+--------+
>>>
>>> # Query: Count the number of "follow" connections in the graph.
... g.edges.filter("relationship = 'follow'").count()
2
>>> results.vertices.select("id", "pagerank").show()
16/11/17 16:03:45 WARN Executor: 1 block locks were not released by TID = 9059:
[rdd_337_0]
16/11/17 16:03:45 WARN Executor: 1 block locks were not released by TID = 9060:
[rdd_337_1]
+---+-------------------+
| id| pagerank|
+---+-------------------+
| a| 0.01|
| b| 0.2808611427228327|
| c|0.27995525261339177|
+---+-------------------+