I replaced the missing values with NaN using lambda following function:
data = data.applymap(lambda x: np.nan if isinstance(x, basestring) and x.isspace() else x)<
This is a known issue with matplotlib/pylab histograms!
See e.g. https://github.com/matplotlib/matplotlib/issues/6483
where various workarounds are suggested, two favourites (for example from https://stackoverflow.com/a/19090183/1021819) being:
import numpy as np
nbins=100
A=data['alcconsumption']
Anan=A[~np.isnan(A)] # Remove the NaNs
seaborn.distplot(Anan,hist=True,bins=nbins)
Alternatively, specify bin edges (in this case by anyway making use of Anan
...):
Amin=min(Anan)
Amax=max(Anan)
seaborn.distplot(A,hist=True,bins=np.linspace(Amin,Amax,nbins))