I have tried using Djikstra\'s Algorithm on a cyclic weighted graph without using a priority queue (heap) and it worked.
Wikipedia states that the original implementatio
I had the exact same doubt and found a test case where the algorithm without a priority_queue would not work.
Let's say I have a Graph object g
, a method addEdge(a,b,w)
which adds edge from vertex a
to vertex b
with weight w
.
Now, let me define the following graph :-
Graph g
g.addEdge(0,1,5) ;
g.addEdge(1,3,1) ;
g.addEdge(0,2,2) ;
g.addEdge(2,1,1) ;
g.addEdge(2,3,7) ;
Now, say our queue contains the nodes in the following order {0,1,2,3 }
So, node 0 is visited first then node 1 is visited.
At this point of time the dist b/w 0 and 3 is computed as 6 using the path 0->1->3
, and 1 is marked as visited.
Now node 2 is visited and dist b/w 0 and 1 is updated to the value 3 using the path 0->2->1
, but since node 1 is marked visited, you cannot change the distance b/w 0 and 3 which (using the optimal path) (`0->2->1->3) is 4.
So, your algorithm fails without using the priority_queue.
It reports dist b/w 0 and 3 to be 6 while in reality it should be 4.
Now, here is the code which I used for implementing the algorithm :-
class Graph
{
public:
vector nodes ;
vector > > edges ;
void addNode()
{
nodes.push_back(nodes.size()) ;
vector > temp ; edges.push_back(temp);
}
void addEdge(int n1, int n2, int w)
{
edges[n1].push_back(make_pair(n2,w)) ;
}
pair, vector > shortest(int source) // shortest path djkitra's
{
vector dist(nodes.size()) ;
fill(dist.begin(), dist.end(), INF) ; dist[source] = 0 ;
vector pred(nodes.size()) ;
fill(pred.begin(), pred.end(), -1) ;
for(int i=0; i<(int)edges[source].size(); i++)
{
dist[edges[source][i].first] = edges[source][i].second ;
pred[edges[source][i].first] = source ;
}
set > pq ;
for(int i=0; i<(int)nodes.size(); i++)
pq.insert(make_pair(dist[i],i)) ;
while(!pq.empty())
{
pair item = *pq.begin() ;
pq.erase(pq.begin()) ;
int v = item.second ;
for(int i=0; i<(int)edges[v].size(); i++)
{
if(dist[edges[v][i].first] > dist[v] + edges[v][i].second)
{
pq.erase(std::find(pq.begin(), pq.end(),make_pair(dist[edges[v][i].first],edges[v][i].first))) ;
pq.insert(make_pair(dist[v] + edges[v][i].second,edges[v][i].first)) ;
dist[edges[v][i].first] = dist[v] + edges[v][i].second ;
pred[i] = edges[v][i].first ;
}
}
}
return make_pair(dist,pred) ;
}
pair, vector > shortestwpq(int source) // shortest path djkitra's without priority_queue
{
vector dist(nodes.size()) ;
fill(dist.begin(), dist.end(), INF) ; dist[source] = 0 ;
vector pred(nodes.size()) ;
fill(pred.begin(), pred.end(), -1) ;
for(int i=0; i<(int)edges[source].size(); i++)
{
dist[edges[source][i].first] = edges[source][i].second ;
pred[edges[source][i].first] = source ;
}
vector > pq ;
for(int i=0; i<(int)nodes.size(); i++)
pq.push_back(make_pair(dist[i],i)) ;
while(!pq.empty())
{
pair item = *pq.begin() ;
pq.erase(pq.begin()) ;
int v = item.second ;
for(int i=0; i<(int)edges[v].size(); i++)
{
if(dist[edges[v][i].first] > dist[v] + edges[v][i].second)
{
dist[edges[v][i].first] = dist[v] + edges[v][i].second ;
pred[i] = edges[v][i].first ;
}
}
}
return make_pair(dist,pred) ;
}
As expected the results were as follows :-
With priority_queue
0
3
2
4
Now using without priority queue
0
3
2
6