Imagine a fully-connected neural network with its last two layers of the following structure:
[Dense]
units = 612
activation = softplus
[Dense]
unit
(TF backend) Solution for Conv layers.
I had the same question, and to rewrite a model's configuration was not an option. The simple hack would be to perform the call function manually. It gives control over the activation.
Copy-paste from the Keras source, with self
changed to layer
. You can do the same with any other layer.
def conv_no_activation(layer, inputs, activation=False):
if layer.rank == 1:
outputs = K.conv1d(
inputs,
layer.kernel,
strides=layer.strides[0],
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate[0])
if layer.rank == 2:
outputs = K.conv2d(
inputs,
layer.kernel,
strides=layer.strides,
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate)
if layer.rank == 3:
outputs = K.conv3d(
inputs,
layer.kernel,
strides=layer.strides,
padding=layer.padding,
data_format=layer.data_format,
dilation_rate=layer.dilation_rate)
if layer.use_bias:
outputs = K.bias_add(
outputs,
layer.bias,
data_format=layer.data_format)
if activation and layer.activation is not None:
outputs = layer.activation(outputs)
return outputs
Now we need to modify the main function a little. First, identify the layer by its name. Then retrieve activations from the previous layer. And at last, compute the output from the target layer.
def get_output_activation_control(model, images, layername, activation=False):
"""Get activations for the input from specified layer"""
inp = model.input
layer_id, layer = [(n, l) for n, l in enumerate(model.layers) if l.name == layername][0]
prev_layer = model.layers[layer_id - 1]
conv_out = conv_no_activation(layer, prev_layer.output, activation=activation)
functor = K.function([inp] + [K.learning_phase()], [conv_out])
return functor([images])
Here is a tiny test. I'm using VGG16 model.
a_relu = get_output_activation_control(vgg_model, img, 'block4_conv1', activation=True)[0]
a_no_relu = get_output_activation_control(vgg_model, img, 'block4_conv1', activation=False)[0]
print(np.sum(a_no_relu < 0))
> 245293
Set all negatives to zero to compare with the results retrieved after an embedded in VGG16 ReLu operation.
a_no_relu[a_no_relu < 0] = 0
print(np.allclose(a_relu, a_no_relu))
> True