Evaluating a mathematical expression in a string

前端 未结 11 1234
名媛妹妹
名媛妹妹 2020-11-21 05:01
stringExp = \"2^4\"
intVal = int(stringExp)      # Expected value: 16

This returns the following error:

Traceback (most recent call         


        
11条回答
  •  醉话见心
    2020-11-21 05:34

    Pyparsing can be used to parse mathematical expressions. In particular, fourFn.py shows how to parse basic arithmetic expressions. Below, I've rewrapped fourFn into a numeric parser class for easier reuse.

    from __future__ import division
    from pyparsing import (Literal, CaselessLiteral, Word, Combine, Group, Optional,
                           ZeroOrMore, Forward, nums, alphas, oneOf)
    import math
    import operator
    
    __author__ = 'Paul McGuire'
    __version__ = '$Revision: 0.0 $'
    __date__ = '$Date: 2009-03-20 $'
    __source__ = '''http://pyparsing.wikispaces.com/file/view/fourFn.py
    http://pyparsing.wikispaces.com/message/view/home/15549426
    '''
    __note__ = '''
    All I've done is rewrap Paul McGuire's fourFn.py as a class, so I can use it
    more easily in other places.
    '''
    
    
    class NumericStringParser(object):
        '''
        Most of this code comes from the fourFn.py pyparsing example
    
        '''
    
        def pushFirst(self, strg, loc, toks):
            self.exprStack.append(toks[0])
    
        def pushUMinus(self, strg, loc, toks):
            if toks and toks[0] == '-':
                self.exprStack.append('unary -')
    
        def __init__(self):
            """
            expop   :: '^'
            multop  :: '*' | '/'
            addop   :: '+' | '-'
            integer :: ['+' | '-'] '0'..'9'+
            atom    :: PI | E | real | fn '(' expr ')' | '(' expr ')'
            factor  :: atom [ expop factor ]*
            term    :: factor [ multop factor ]*
            expr    :: term [ addop term ]*
            """
            point = Literal(".")
            e = CaselessLiteral("E")
            fnumber = Combine(Word("+-" + nums, nums) +
                              Optional(point + Optional(Word(nums))) +
                              Optional(e + Word("+-" + nums, nums)))
            ident = Word(alphas, alphas + nums + "_$")
            plus = Literal("+")
            minus = Literal("-")
            mult = Literal("*")
            div = Literal("/")
            lpar = Literal("(").suppress()
            rpar = Literal(")").suppress()
            addop = plus | minus
            multop = mult | div
            expop = Literal("^")
            pi = CaselessLiteral("PI")
            expr = Forward()
            atom = ((Optional(oneOf("- +")) +
                     (ident + lpar + expr + rpar | pi | e | fnumber).setParseAction(self.pushFirst))
                    | Optional(oneOf("- +")) + Group(lpar + expr + rpar)
                    ).setParseAction(self.pushUMinus)
            # by defining exponentiation as "atom [ ^ factor ]..." instead of
            # "atom [ ^ atom ]...", we get right-to-left exponents, instead of left-to-right
            # that is, 2^3^2 = 2^(3^2), not (2^3)^2.
            factor = Forward()
            factor << atom + \
                ZeroOrMore((expop + factor).setParseAction(self.pushFirst))
            term = factor + \
                ZeroOrMore((multop + factor).setParseAction(self.pushFirst))
            expr << term + \
                ZeroOrMore((addop + term).setParseAction(self.pushFirst))
            # addop_term = ( addop + term ).setParseAction( self.pushFirst )
            # general_term = term + ZeroOrMore( addop_term ) | OneOrMore( addop_term)
            # expr <<  general_term
            self.bnf = expr
            # map operator symbols to corresponding arithmetic operations
            epsilon = 1e-12
            self.opn = {"+": operator.add,
                        "-": operator.sub,
                        "*": operator.mul,
                        "/": operator.truediv,
                        "^": operator.pow}
            self.fn = {"sin": math.sin,
                       "cos": math.cos,
                       "tan": math.tan,
                       "exp": math.exp,
                       "abs": abs,
                       "trunc": lambda a: int(a),
                       "round": round,
                       "sgn": lambda a: abs(a) > epsilon and cmp(a, 0) or 0}
    
        def evaluateStack(self, s):
            op = s.pop()
            if op == 'unary -':
                return -self.evaluateStack(s)
            if op in "+-*/^":
                op2 = self.evaluateStack(s)
                op1 = self.evaluateStack(s)
                return self.opn[op](op1, op2)
            elif op == "PI":
                return math.pi  # 3.1415926535
            elif op == "E":
                return math.e  # 2.718281828
            elif op in self.fn:
                return self.fn[op](self.evaluateStack(s))
            elif op[0].isalpha():
                return 0
            else:
                return float(op)
    
        def eval(self, num_string, parseAll=True):
            self.exprStack = []
            results = self.bnf.parseString(num_string, parseAll)
            val = self.evaluateStack(self.exprStack[:])
            return val
    

    You can use it like this

    nsp = NumericStringParser()
    result = nsp.eval('2^4')
    print(result)
    # 16.0
    
    result = nsp.eval('exp(2^4)')
    print(result)
    # 8886110.520507872
    

提交回复
热议问题