How to get extra information of blobs with SimpleBlobDetector?

后端 未结 3 913
[愿得一人]
[愿得一人] 2021-02-06 19:15

@robot_sherrick answered me this question, this is a follow-up question for his answer.

cv::SimpleBlobDetector in Opencv 2.4 looks very exciting but I am no

3条回答
  •  时光取名叫无心
    2021-02-06 19:48

    Here is a version that will allow you to get the last contours back, via the getContours() method. They will match up by index to the keypoints.

    class BetterBlobDetector : public cv::SimpleBlobDetector
    {
    public:
    
        BetterBlobDetector(const cv::SimpleBlobDetector::Params ¶meters = cv::SimpleBlobDetector::Params());
    
        const std::vector < std::vector > getContours();
    
    protected:
        virtual void detectImpl( const cv::Mat& image, std::vector& keypoints, const cv::Mat& mask=cv::Mat()) const;
        virtual void findBlobs(const cv::Mat &image, const cv::Mat &binaryImage,
                               std::vector
    ¢ers, std::vector < std::vector >&contours) const; };

    Then cpp

    using namespace cv;
    
    BetterBlobDetector::BetterBlobDetector(const SimpleBlobDetector::Params ¶meters)
    {
    
    }
    
    void BetterBlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryImage,
                                       vector
    ¢ers, std::vector < std::vector >&curContours) const { (void)image; centers.clear(); curContours.clear(); std::vector < std::vector >contours; Mat tmpBinaryImage = binaryImage.clone(); findContours(tmpBinaryImage, contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE); for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++) { Center center; center.confidence = 1; Moments moms = moments(Mat(contours[contourIdx])); if (params.filterByArea) { double area = moms.m00; if (area < params.minArea || area >= params.maxArea) continue; } if (params.filterByCircularity) { double area = moms.m00; double perimeter = arcLength(Mat(contours[contourIdx]), true); double ratio = 4 * CV_PI * area / (perimeter * perimeter); if (ratio < params.minCircularity || ratio >= params.maxCircularity) continue; } if (params.filterByInertia) { double denominator = sqrt(pow(2 * moms.mu11, 2) + pow(moms.mu20 - moms.mu02, 2)); const double eps = 1e-2; double ratio; if (denominator > eps) { double cosmin = (moms.mu20 - moms.mu02) / denominator; double sinmin = 2 * moms.mu11 / denominator; double cosmax = -cosmin; double sinmax = -sinmin; double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin; double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax; ratio = imin / imax; } else { ratio = 1; } if (ratio < params.minInertiaRatio || ratio >= params.maxInertiaRatio) continue; center.confidence = ratio * ratio; } if (params.filterByConvexity) { vector < Point > hull; convexHull(Mat(contours[contourIdx]), hull); double area = contourArea(Mat(contours[contourIdx])); double hullArea = contourArea(Mat(hull)); double ratio = area / hullArea; if (ratio < params.minConvexity || ratio >= params.maxConvexity) continue; } center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00); if (params.filterByColor) { if (binaryImage.at (cvRound(center.location.y), cvRound(center.location.x)) != params.blobColor) continue; } //compute blob radius { vector dists; for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++) { Point2d pt = contours[contourIdx][pointIdx]; dists.push_back(norm(center.location - pt)); } std::sort(dists.begin(), dists.end()); center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.; } centers.push_back(center); curContours.push_back(contours[contourIdx]); } static std::vector < std::vector > _contours; const std::vector < std::vector > BetterBlobDetector::getContours() { return _contours; } void BetterBlobDetector::detectImpl(const cv::Mat& image, std::vector& keypoints, const cv::Mat&) const { //TODO: support mask _contours.clear(); keypoints.clear(); Mat grayscaleImage; if (image.channels() == 3) cvtColor(image, grayscaleImage, CV_BGR2GRAY); else grayscaleImage = image; vector < vector
    > centers; vector < vector >contours; for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep) { Mat binarizedImage; threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY); vector < Center > curCenters; vector < vector >curContours, newContours; findBlobs(grayscaleImage, binarizedImage, curCenters, curContours); vector < vector
    > newCenters; for (size_t i = 0; i < curCenters.size(); i++) { bool isNew = true; for (size_t j = 0; j < centers.size(); j++) { double dist = norm(centers[j][ centers[j].size() / 2 ].location - curCenters[i].location); isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius; if (!isNew) { centers[j].push_back(curCenters[i]); size_t k = centers[j].size() - 1; while( k > 0 && centers[j][k].radius < centers[j][k-1].radius ) { centers[j][k] = centers[j][k-1]; k--; } centers[j][k] = curCenters[i]; break; } } if (isNew) { newCenters.push_back(vector
    (1, curCenters[i])); newContours.push_back(curContours[i]); //centers.push_back(vector
    (1, curCenters[i])); } } std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers)); std::copy(newContours.begin(), newContours.end(), std::back_inserter(contours)); } for (size_t i = 0; i < centers.size(); i++) { if (centers[i].size() < params.minRepeatability) continue; Point2d sumPoint(0, 0); double normalizer = 0; for (size_t j = 0; j < centers[i].size(); j++) { sumPoint += centers[i][j].confidence * centers[i][j].location; normalizer += centers[i][j].confidence; } sumPoint *= (1. / normalizer); KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius)); keypoints.push_back(kpt); _contours.push_back(contours[i]); } }

提交回复
热议问题