I would like to read a .csv file and return a groupby function as a callback to be displayed as a simple data table with \"dash_table\" library. @Lawliet\'s helpful answer shows
When you are trying to register the callback Output
component as a DataTable
, all the required / mandatory attributes for the DataTable
component should be updated in the callback and returned. In your code, you are updating just DataTable.data
and not DataTable.column
, one easy way is to return the whole Datatable
component which is prepopulated with all the required attribute values.
Here is an example,
import dash_html_components as html
import dash_core_components as dcc
import dash
import dash_table
import pandas as pd
import dash_table_experiments as dt
app = dash.Dash(__name__)
#data to be loaded
data = [['Alex',10],['Bob',12],['Clarke',13],['Alex',100]]
df = pd.DataFrame(data,columns=['Name','Mark'])
app.layout = html.Div([
dt.DataTable(
rows=df.to_dict('records'),
columns=df.columns,
row_selectable=True,
filterable=True,
sortable=True,
selected_row_indices=list(df.index), # all rows selected by default
id='2'
),
html.Button('Submit', id='button'),
html.Div(id="div-1"),
])
@app.callback(
dash.dependencies.Output('div-1', 'children'),
[dash.dependencies.Input('button', 'n_clicks')])
def update_output(n_clicks):
df_chart = df.groupby('Name').sum()
return [
dt.DataTable(
rows=df_chart.to_dict('rows'),
columns=df_chart.columns,
row_selectable=True,
filterable=True,
sortable=True,
selected_row_indices=list(df_chart.index), # all rows selected by default
id='3'
)
]
if __name__ == '__main__':
app.run_server(debug=True)
Looks like dash-table-experiments
is deprecated.
Edit 1: Here is one way of how it can be achieved using dash_tables
import pandas as pd
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_table as dt
from dash.dependencies import Input, Output, State
df = pd.read_csv(
'https://gist.githubusercontent.com/chriddyp/'
'c78bf172206ce24f77d6363a2d754b59/raw/'
'c353e8ef842413cae56ae3920b8fd78468aa4cb2/'
'usa-agricultural-exports-2011.csv')
app = dash.Dash()
application = app.server
app.layout = html.Div([
dt.DataTable(
id = 'dt1',
columns = [{"name": i, "id": i,} for i in (df.columns)],
),
html.Div([
html.Button(id='submit-button',
children='Submit'
)
]),
])
@app.callback(Output('dt1','data'),
[Input('submit-button','n_clicks')],
[State('submit-button','n_clicks')])
def update_datatable(n_clicks,csv_file):
if n_clicks:
dfgb = df.groupby(['state']).sum()
data_1 = df.to_dict('rows')
return data_1
if __name__ == '__main__':
application.run(debug=False, port=8080)
Another way: return the whole DataTable
import pandas as pd
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_table as dt
from dash.dependencies import Input, Output, State
df = pd.read_csv(
'https://gist.githubusercontent.com/chriddyp/'
'c78bf172206ce24f77d6363a2d754b59/raw/'
'c353e8ef842413cae56ae3920b8fd78468aa4cb2/'
'usa-agricultural-exports-2011.csv')
app = dash.Dash()
application = app.server
app.layout = html.Div([
html.Div(id="table1"),
html.Div([
html.Button(id='submit-button',
children='Submit'
)
]),
])
@app.callback(Output('table1','children'),
[Input('submit-button','n_clicks')],
[State('submit-button','n_clicks')])
def update_datatable(n_clicks,csv_file):
if n_clicks:
dfgb = df.groupby(['state']).sum()
data = df.to_dict('rows')
columns = [{"name": i, "id": i,} for i in (df.columns)]
return dt.DataTable(data=data, columns=columns)
if __name__ == '__main__':
application.run(debug=False, port=8080)
I referred to this example: https://github.com/plotly/dash-table/blob/master/tests/cypress/dash/v_copy_paste.py#L33