Data frame
I am working with a data frame in Jupyter Notebooks and I am having some difficulty with it. The data frame consists of locations and these are represented by
I think need here MultiIndex
created by MultiIndex.from_product:
mux = pd.MultiIndex.from_product([['Start','Intermediary','End'], ['lat','lng']])
df = pd.DataFrame(data, columns=mux)
EDIT:
Setup:
temp=u""" start intermediary end
('54.957055',' -7.740156') ('54.956915136264', ' -7.753690062122') ('54.957055','-7.740156')
('54.8913208', '-7.5740475') ('54.864402885577', '-7.653445692445'),('54','0') ('54.8913208','-7.5740475')
('55.2375819', '-7.2357427') ('55.253936739337', '-7.259624609577'), ('54','2'),('54','1') ('55.2375819','-7.2357427')
('54.5298806', '-8.1350247') ('54.504374314741', '-8.188334960168') ('54.5298806','-8.1350247')
('54.2810187', ' -7.896937') ('54.303836850038', '-8.180136033695'), ('54','3') ('54.2810187','-7.896937')
"""
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), sep="\s{3,}")
print (df)
start \
0 ('54.957055',' -7.740156')
1 ('54.8913208', '-7.5740475')
2 ('55.2375819', '-7.2357427')
3 ('54.5298806', '-8.1350247')
4 ('54.2810187', ' -7.896937')
intermediary \
0 ('54.956915136264', ' -7.753690062122')
1 ('54.864402885577', '-7.653445692445'),('54','0')
2 ('55.253936739337', '-7.259624609577'), ('54',...
3 ('54.504374314741', '-8.188334960168')
4 ('54.303836850038', '-8.180136033695'), ('54',...
end
0 ('54.957055','-7.740156')
1 ('54.8913208','-7.5740475')
2 ('55.2375819','-7.2357427')
3 ('54.5298806','-8.1350247')
4 ('54.2810187','-7.896937')
import ast
#convert string values to tuples
df = df.applymap(lambda x: ast.literal_eval(x))
#convert onpy pairs values to nested lists
df['intermediary'] = df['intermediary'].apply(lambda x: list(x) if isinstance(x[1], tuple) else [x])
#DataFrame by first Start column
df1 = pd.DataFrame(df['start'].values.tolist(), columns=['lat','lng'])
#DataFrame by intermediary column with reshape for 2 columns df
df2 = (pd.concat([pd.DataFrame(x, columns=['lat','lng']) for x in df['intermediary']], keys=df.index)
.reset_index(level=1, drop=True)
.add_prefix('intermediary_'))
print (df2)
#join all DataFrames together
df3 = df1.add_prefix('start_').join(df2).join(df1.add_prefix('end_'))
#create MultiIndex by split
df3.columns = df3.columns.str.split('_', expand=True)
print (df3)
start intermediary end \
lat lng lat lng lat
0 54.957055 -7.740156 54.956915136264 -7.753690062122 54.957055
1 54.8913208 -7.5740475 54.864402885577 -7.653445692445 54.8913208
1 54.8913208 -7.5740475 54 0 54.8913208
2 55.2375819 -7.2357427 55.253936739337 -7.259624609577 55.2375819
2 55.2375819 -7.2357427 54 2 55.2375819
2 55.2375819 -7.2357427 54 1 55.2375819
3 54.5298806 -8.1350247 54.504374314741 -8.188334960168 54.5298806
4 54.2810187 -7.896937 54.303836850038 -8.180136033695 54.2810187
4 54.2810187 -7.896937 54 3 54.2810187
lng
0 -7.740156
1 -7.5740475
1 -7.5740475
2 -7.2357427
2 -7.2357427
2 -7.2357427
3 -8.1350247
4 -7.896937
4 -7.896937