If we have concrete range of max..min value it is quite easy to normalize it to 0..1 float values, but if we don\'t have concrete limits? Is it possible to build universal funct
With nearly all programming of floating point numbers, the values are distributed logarithmically. Therefore first take the log()
of the value to begin mapping paying attention to edge case concerns.
double map(double x, double x0, double x1, double y0, double y1) {
return (x - x0) / (x1 - x0) * (y1 - y0) + y0;
}
double noramlize01(double x) {
assert(x == x); // fail is x is NaN
// These values only need to be calculated once.
double logxmin = log(DBL_TRUE_MIN); // e.g. -323.306...
double logxmax = log(DBL_MAX); // e.g. 308.254...
double y;
if (x < -DBL_MAX) y = 0.0;
else if (x < 0.0) {
y = map(log(-x), logxmax, logxmin, nextafter(0.0,1.0), nextafter(0.5,0.0));
} else if (x == 0.0) {
y = 0.5;
} else if (x <= DBL_MAX) {
y = map(log(x), logxmin, logxmax, nextafter(0.5,1.0), nextafter(1.0,0.5));
} else {
y = 1.0;
}
return y;
}
double round_n(double x, unsigned n) {
return x * n;
}
void testr(double x) {
printf("% 20e %#.17g\n", x, noramlize01(x));
//printf("% 20e %.17f\n", -x, noramlize01(-x));
}
int main(void) {
double t[] = {0.0, DBL_TRUE_MIN, DBL_MIN, 1/M_PI, 1/M_E,
1.0, M_E, M_PI, DBL_MAX, INFINITY};
for (unsigned i = sizeof t/sizeof t[0]; i > 0; i--) {
testr(-t[i-1]);
}
for (unsigned i = 0; i < sizeof t/sizeof t[0]; i++) {
testr(t[i]);
}
}
Sample output
-inf 0.0000000000000000
-1.797693e+308 4.9406564584124654e-324
-3.141593e+00 0.24364835649917244
-2.718282e+00 0.24369811843639441
-1.000000e+00 0.24404194470924687
-3.678794e-01 0.24438577098209935
-3.183099e-01 0.24443553291932130
-2.225074e-308 0.48760724499523350
-4.940656e-324 0.49999999999999994
-0.000000e+00 0.50000000000000000
0.000000e+00 0.50000000000000000
4.940656e-324 0.50000000000000011
2.225074e-308 0.51239275500476655
3.183099e-01 0.75556446708067870
3.678794e-01 0.75561422901790065
1.000000e+00 0.75595805529075311
2.718282e+00 0.75630188156360556
3.141593e+00 0.75635164350082751
1.797693e+308 0.99999999999999989
inf 1.0000000000000000