I would like to preprocess a corpus of documents using Python in the same way that I can in R. For example, given an initial corpus, corpus
, I would like to end up
It seems tricky to get things exactly the same between nltk
and tm
on the preprocessing steps, so I think the best approach is to use rpy2
to run the preprocessing in R and pull the results into python:
import rpy2.robjects as ro
preproc = [x[0] for x in ro.r('''
tweets = read.csv("tweets.csv", stringsAsFactors=FALSE)
library(tm)
library(SnowballC)
corpus = Corpus(VectorSource(tweets$Tweet))
corpus = tm_map(corpus, tolower)
corpus = tm_map(corpus, removePunctuation)
corpus = tm_map(corpus, removeWords, c("apple", stopwords("english")))
corpus = tm_map(corpus, stemDocument)''')]
Then, you can load it into scikit-learn
-- the only thing you'll need to do to get things to match between the CountVectorizer
and the DocumentTermMatrix
is to remove terms of length less than 3:
from sklearn.feature_extraction.text import CountVectorizer
def mytokenizer(x):
return [y for y in x.split() if len(y) > 2]
# Full document-term matrix
cv = CountVectorizer(tokenizer=mytokenizer)
X = cv.fit_transform(preproc)
X
# <1181x3289 sparse matrix of type ''
# with 8980 stored elements in Compressed Sparse Column format>
# Sparse terms removed
cv2 = CountVectorizer(tokenizer=mytokenizer, min_df=0.005)
X2 = cv2.fit_transform(preproc)
X2
# <1181x309 sparse matrix of type ''
# with 4669 stored elements in Compressed Sparse Column format>
Let's verify this matches with R:
tweets = read.csv("tweets.csv", stringsAsFactors=FALSE)
library(tm)
library(SnowballC)
corpus = Corpus(VectorSource(tweets$Tweet))
corpus = tm_map(corpus, tolower)
corpus = tm_map(corpus, removePunctuation)
corpus = tm_map(corpus, removeWords, c("apple", stopwords("english")))
corpus = tm_map(corpus, stemDocument)
dtm = DocumentTermMatrix(corpus)
dtm
# A document-term matrix (1181 documents, 3289 terms)
#
# Non-/sparse entries: 8980/3875329
# Sparsity : 100%
# Maximal term length: 115
# Weighting : term frequency (tf)
sparse = removeSparseTerms(dtm, 0.995)
sparse
# A document-term matrix (1181 documents, 309 terms)
#
# Non-/sparse entries: 4669/360260
# Sparsity : 99%
# Maximal term length: 20
# Weighting : term frequency (tf)
As you can see, the number of stored elements and terms exactly match between the two approaches now.