How to plot random intercept and slope in a mixed model with multiple predictors?

前端 未结 1 519
我寻月下人不归
我寻月下人不归 2021-02-06 12:13

Is it possible to plot the random intercept or slope of a mixed model when it has more than one predictor?

With one predictor I would do like this:

#gene         


        
1条回答
  •  清酒与你
    2021-02-06 12:48

    ## generate one response, two predictors and one factor (random effect)
    set.seed(101)
    resp <- runif(100,1,100)
    pred1<- rnorm(100, 
               mean=rep(resp[1:50],2)+rep(c(-10,20),each=50),
               sd=rep(c(10,5),each=50))
    pred2<- rnorm(100, resp-10, 10)
    

    NOTE that you should probably not be trying to fit a random effect for an grouping variable with only two levels -- this will almost invariably result in an estimated random-effect variance of zero, which will in turn put your predicted lines right on top of each other -- I'm switching from gl(2,50) to gl(10,10) ...

    RF1<-gl(10,10)
    d <- data.frame(resp,pred1,pred2,RF1)
    
    #lmer
    library(lme4)
    mod <- lmer(resp ~ pred1 + pred2 + (1|RF1),data=d)
    

    The development version of lme4 has a predict() function that makes this a little easier ...

    • Predict for a range of pred1 with pred2 equal to its mean, and vice versa. This is all a little bit cleverer than it needs to be, since it generates all the values for both focal predictors and plots them with ggplot in one go ...

    ()

    nd <- with(d,
               rbind(data.frame(expand.grid(RF1=levels(RF1),
                          pred1=seq(min(pred1),max(pred1),length=51)),
                          pred2=mean(pred2),focus="pred1"),
                     data.frame(expand.grid(RF1=levels(RF1),
                          pred2=seq(min(pred2),max(pred2),length=51)),
                          pred1=mean(pred1),focus="pred2")))
    nd$val <- with(nd,pred1[focus=="pred1"],pred2[focus=="pred2"])
    pframe <- data.frame(nd,resp=predict(mod,newdata=nd))
    library(ggplot2)
    ggplot(pframe,aes(x=val,y=resp,colour=RF1))+geom_line()+
             facet_wrap(~focus,scale="free")
    
    • Alternatively, focusing just on pred1 and generating predictions for a (small/discrete) range of pred2 values ...

    ()

    nd <- with(d,
               data.frame(expand.grid(RF1=levels(RF1),
                          pred1=seq(min(pred1),max(pred1),length=51),
                          pred2=seq(-20,100,by=40))))
    pframe <- data.frame(nd,resp=predict(mod,newdata=nd))
    ggplot(pframe,aes(x=pred1,y=resp,colour=RF1))+geom_line()+
             facet_wrap(~pred2,nrow=1)
    

    You might want to set scale="free" in the last facet_wrap() ... or use facet_grid(~pred2,labeller=label_both)

    For presentation you might want to replace the colour aesthetic, with group, if all you want to do is distinguish among groups (i.e. plot separate lines) rather than identify them ...

    0 讨论(0)
提交回复
热议问题