I have a dataset (data frame) with 5 columns all containing numeric values.
I\'m looking to run a simple linear regression for each pair in the dataset.
For ex
I would recommend to also look at the correlation matrix (cor(DF)
), which is usually the best way to discover linear relationships between variables. The correlation is tightly linked to the covariance and the slopes of a simple linear regression. The computation below exemplifies this link.
Sample data:
set.seed(1)
DF <- data.frame(
A=rnorm(50, 100, 3),
B=rnorm(50, 100, 3),
C=rnorm(50, 100, 3),
D=rnorm(50, 100, 3),
E=rnorm(50, 100, 3)
)
The regression slope is cov(x, y) / var(x)
beta = cov(DF) * (1/diag(var(DF)))
A B C D E
A 1.00000000 -0.045548503 0.028448192 -0.32982367 0.01800795
B -0.03354243 1.000000000 0.003298708 -0.02489518 0.04501362
C 0.02429041 0.003824755 1.000000000 0.24269838 0.15550116
D -0.22407592 -0.022967212 0.193107904 1.00000000 -0.08977834
E 0.01038445 0.035248685 0.105020194 -0.07620397 1.00000000
The intercept is mean(y) - beta * mean(x)
colMeans(DF) - beta * colMeans(DF)
A B C D E
A 1.421085e-14 104.86992 97.44795 133.38310 98.49512
B 1.037180e+02 0.00000 100.02095 102.85026 95.83477
C 9.712461e+01 99.16182 0.00000 75.38373 84.06356
D 1.226899e+02 102.53263 80.87529 0.00000 109.22915
E 9.886859e+01 96.38451 89.41391 107.51930 0.00000