I would like to merge nine Pandas dataframes together into a single dataframe, doing a join on two columns, controlling the column names. Is this possible?
I have nine d
You could use functools.reduce to iteratively apply pd.merge
to each of the DataFrames:
result = functools.reduce(merge, dfs)
This is equivalent to
result = dfs[0]
for df in dfs[1:]:
result = merge(result, df)
To pass the on=['org', 'name']
argument, you could use functools.partial
define the merge function:
merge = functools.partial(pd.merge, on=['org', 'name'])
Since specifying the suffixes
parameter in functools.partial
would only allow
one fixed choice of suffix, and since here we need a different suffix for each
pd.merge
call, I think it would be easiest to prepare the DataFrames column
names before calling pd.merge
:
for i, df in enumerate(dfs, start=1):
df.rename(columns={col:'{}_df{}'.format(col, i) for col in ('items', 'spend')},
inplace=True)
For example,
import pandas as pd
import numpy as np
import functools
np.random.seed(2015)
N = 50
dfs = [pd.DataFrame(np.random.randint(5, size=(N,4)),
columns=['org', 'name', 'items', 'spend']) for i in range(9)]
for i, df in enumerate(dfs, start=1):
df.rename(columns={col:'{}_df{}'.format(col, i) for col in ('items', 'spend')},
inplace=True)
merge = functools.partial(pd.merge, on=['org', 'name'])
result = functools.reduce(merge, dfs)
print(result.head())
yields
org name items_df1 spend_df1 items_df2 spend_df2 items_df3 \
0 2 4 4 2 3 0 1
1 2 4 4 2 3 0 1
2 2 4 4 2 3 0 1
3 2 4 4 2 3 0 1
4 2 4 4 2 3 0 1
spend_df3 items_df4 spend_df4 items_df5 spend_df5 items_df6 \
0 3 1 0 1 0 4
1 3 1 0 1 0 4
2 3 1 0 1 0 4
3 3 1 0 1 0 4
4 3 1 0 1 0 4
spend_df6 items_df7 spend_df7 items_df8 spend_df8 items_df9 spend_df9
0 3 4 1 3 0 1 2
1 3 4 1 3 0 0 3
2 3 4 1 3 0 0 0
3 3 3 1 3 0 1 2
4 3 3 1 3 0 0 3