I have a dataframe (df) that looks like this:
environment event
time
2017-04-28 13:08:22 NaN add_rd
if you want to replace just 'add_rd' with 'RD', this can be useful to you
keys_to_replace = {'add_rd':'RD','add_env':'simple'}
df['environment'] = df.groupby(['event'])['environment'].fillna(keys_to_replace['add_rd'])
df
output:
environment event
0 RD add_rd
1 RD add_rd
2 test add_env
3 prod add_env
if you have many values to replace based on event, then you may need to follow groupby with 'event' column values
keys_to_replace = {'add_rd':'RD','add_env':'simple'}
temp = df.groupby(['event']).apply(lambda x: x['environment'].fillna(keys_to_replace[x['event'].values[0]]))
temp.index = temp.index.droplevel(0)
df['environment'] = temp.sort_index().values
output:
environment event
0 RD add_rd
1 RD add_rd
2 test add_env
3 prod add_env