I am trying to understand whether it is better to report month-over-month on the current Firebase \"Active\" User metrics report (view graph below), or rather self-calculate and
To answer my own question I would like to first revisit the definitions, and then run over the calculations.
Based on the supporting Firebase documents, I summarized the definitions for each of the metrics below. It is very important to state that only the unique users should be counted over each of the metrics (given selected date range).
user_engagement
event within the last 1-day period (given selected date range).user_engagement
event within the last 7-day period (given selected date range).user_engagement
event within the last 28-day period (given selected date range).In the cells below you can see how the metrics are calculated for December:
Methodology to Calculate Each Metric / Audience:
Average 1-day active user metric
.Average 7-day active user metric
. I calculated this by averaging the snapshots at 7, 14, 21, 28 December.Non-averaged 28-day active user metric
. The main reason for not averaging this metric's value is, because I want to have only one snapshot of the entire month. If I would have used averages here I would also account for users that were active in a previous month. AVG 1-day Unique Active User Metric (Android, Dec 2018)
# StandardSQL
SELECT
ROUND(AVG(users),0) AS users
FROM
(
SELECT
event_date,
COUNT(DISTINCT user_pseudo_id) AS users
FROM `.events_*`
WHERE
event_name = 'user_engagement'
AND _TABLE_SUFFIX BETWEEN '20181201' AND '20181231'
AND platform = "ANDROID"
GROUP BY 1
) table
# or you could also use code below, but you will have to add in the remaining days' code to query against the entire month.
-- Set your variables here
WITH timeframe AS (SELECT DATE("2018-12-01") AS start_date, DATE("2018-12-31") AS end_date)
-- Query your variables here
SELECT ROUND(AVG(users),0) AS users
FROM
(
SELECT event_date, COUNT(DISTINCT user_pseudo_id) AS users
FROM `.events_*`AS z, timeframe AS t
WHERE
event_name = 'user_engagement'
AND _TABLE_SUFFIX > FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 1 DAY))
AND _TABLE_SUFFIX <= FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL 0 DAY))
AND platform = "ANDROID"
GROUP BY 1
UNION ALL
SELECT event_date, COUNT(DISTINCT user_pseudo_id) AS users
FROM `.events_*`AS z, timeframe AS t
WHERE
event_name = 'user_engagement'
AND _TABLE_SUFFIX > FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 2 DAY))
AND _TABLE_SUFFIX <= FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 1 DAY))
AND platform = "ANDROID"
GROUP BY 1
...
...
...
...
) avg_1_day_active_users
AVG 7-day Unique Active User Metric (Android, Dec 2018)
-- Set your variables here
WITH timeframe AS (SELECT DATE("2018-12-01") AS start_date, DATE("2018-12-31") AS end_date)
-- Query your variables here
SELECT ROUND(AVG(users),0) AS users
FROM
(
SELECT COUNT(DISTINCT user_pseudo_id) AS users
FROM `.events_*`AS z, timeframe AS t
WHERE
event_name = 'user_engagement'
AND _TABLE_SUFFIX > FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 7 DAY))
AND _TABLE_SUFFIX <= FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL 0 DAY))
AND platform = "ANDROID"
UNION ALL
SELECT COUNT(DISTINCT user_pseudo_id) AS users
FROM `.events_*`AS z, timeframe AS t
WHERE
event_name = 'user_engagement'
AND _TABLE_SUFFIX > FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 14 DAY))
AND _TABLE_SUFFIX <= FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 7 DAY))
AND platform = "ANDROID"
UNION ALL
SELECT COUNT(DISTINCT user_pseudo_id) AS users
FROM `.events_*`AS z, timeframe AS t
WHERE
event_name = 'user_engagement'
AND _TABLE_SUFFIX > FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 21 DAY))
AND _TABLE_SUFFIX <= FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 14 DAY))
AND platform = "ANDROID"
UNION ALL
SELECT COUNT(DISTINCT user_pseudo_id) AS users
FROM `.events_*`AS z, timeframe AS t
WHERE
event_name = 'user_engagement'
AND _TABLE_SUFFIX > FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 28 DAY))
AND _TABLE_SUFFIX <= FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 21 DAY))
AND platform = "ANDROID"
) avg_7_day_active_users
Non-averaged 28-day Unique Active User Metric (Android, Dec 2018)
# StandardSQL
-- Set your variables here
WITH timeframe AS (SELECT DATE("2018-12-01") AS start_date, DATE("2018-12-31") AS end_date)
-- Query your variables here
SELECT COUNT(DISTINCT user_pseudo_id) AS users
FROM `.events_*`AS z, timeframe AS t
WHERE
event_name = 'user_engagement'
AND _TABLE_SUFFIX > FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL - 28 DAY))
AND _TABLE_SUFFIX <= FORMAT_DATE('%Y%m%d', DATE_ADD(t.end_date, INTERVAL 0 DAY))
AND platform = "ANDROID"
Side Notes:
SELECT COUNT(DISTINCT user_id) FROM /* PLEASE REPLACE WITH YOUR TABLE NAME */ `YOUR_TABLE.events_*` WHERE event_name = 'user_engagement' /* Pick events in the last N = 20 days */ AND event_timestamp > UNIX_MICROS(TIMESTAMP_SUB(CURRENT_TIMESTAMP, INTERVAL 20 DAY)) /* PLEASE REPLACE WITH YOUR DESIRED DATE RANGE */ AND _TABLE_SUFFIX BETWEEN '20180521' AND '20240131';