If I have homogeneous linear equations like this
array([[-0.75, 0.25, 0.25, 0.25],
[ 1. , -1. , 0. , 0. ],
[ 1. , 0. , -1. , 0. ],
You can use an SVD or a QR decomposition to compute the null space of the linear system, e.g., something like:
import numpy
def null(A, eps=1e-15):
u, s, vh = numpy.linalg.svd(A)
null_space = numpy.compress(s <= eps, vh, axis=0)
return null_space.T
This yields for your example:
>>> A
matrix([[-0.75, 0.25, 0.25, 0.25],
[ 1. , -1. , 0. , 0. ],
[ 1. , 0. , -1. , 0. ],
[ 1. , 0. , 0. , -1. ]])
>>> null(A).T
array([[-0.5, -0.5, -0.5, -0.5]])
>>> (A*null(A)).T
matrix([[ 1.66533454e-16, -1.66533454e-16, -2.22044605e-16, -2.22044605e-16]])
See also the section Numerical computation of null space on Wikipedia.