I want to know how to use multilayered bidirectional LSTM in Tensorflow.
I have already implemented the contents of bidirectional LSTM, but I wanna compare this model wi
This is primarily same as the first answer but with a little variation of usage of scope name and with added dropout wrappers. It also takes care of the error the first answer gives about variable scope.
def bidirectional_lstm(input_data, num_layers, rnn_size, keep_prob):
output = input_data
for layer in range(num_layers):
with tf.variable_scope('encoder_{}'.format(layer),reuse=tf.AUTO_REUSE):
# By giving a different variable scope to each layer, I've ensured that
# the weights are not shared among the layers. If you want to share the
# weights, you can do that by giving variable_scope as "encoder" but do
# make sure first that reuse is set to tf.AUTO_REUSE
cell_fw = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.truncated_normal_initializer(-0.1, 0.1, seed=2))
cell_fw = tf.contrib.rnn.DropoutWrapper(cell_fw, input_keep_prob = keep_prob)
cell_bw = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.truncated_normal_initializer(-0.1, 0.1, seed=2))
cell_bw = tf.contrib.rnn.DropoutWrapper(cell_bw, input_keep_prob = keep_prob)
outputs, states = tf.nn.bidirectional_dynamic_rnn(cell_fw,
cell_bw,
output,
dtype=tf.float32)
# Concat the forward and backward outputs
output = tf.concat(outputs,2)
return output