When writing multithreaded applications, one of the most common problems experienced is race conditions.
My questions to the community are:
What is the rac
There is an important technical difference between race conditions and data races. Most answers seem to make the assumption that these terms are equivalent, but they are not.
A data race occurs when 2 instructions access the same memory location, at least one of these accesses is a write and there is no happens before ordering among these accesses. Now what constitutes a happens before ordering is subject to a lot of debate, but in general ulock-lock pairs on the same lock variable and wait-signal pairs on the same condition variable induce a happens-before order.
A race condition is a semantic error. It is a flaw that occurs in the timing or the ordering of events that leads to erroneous program behavior.
Many race conditions can be (and in fact are) caused by data races, but this is not necessary. As a matter of fact, data races and race conditions are neither the necessary, nor the sufficient condition for one another. This blog post also explains the difference very well, with a simple bank transaction example. Here is another simple example that explains the difference.
Now that we nailed down the terminology, let us try to answer the original question.
Given that race conditions are semantic bugs, there is no general way of detecting them. This is because there is no way of having an automated oracle that can distinguish correct vs. incorrect program behavior in the general case. Race detection is an undecidable problem.
On the other hand, data races have a precise definition that does not necessarily relate to correctness, and therefore one can detect them. There are many flavors of data race detectors (static/dynamic data race detection, lockset-based data race detection, happens-before based data race detection, hybrid data race detection). A state of the art dynamic data race detector is ThreadSanitizer which works very well in practice.
Handling data races in general requires some programming discipline to induce happens-before edges between accesses to shared data (either during development, or once they are detected using the above mentioned tools). this can be done through locks, condition variables, semaphores, etc. However, one can also employ different programming paradigms like message passing (instead of shared memory) that avoid data races by construction.