Hotelling's T^2 scores in python

前端 未结 2 1102
慢半拍i
慢半拍i 2021-02-06 00:33

I applied pca on a data set using matplotlib in python. However, matplotlib does not provide a t-squared scores like Matlab. Is there a way to compute Hotelling\'s T^2 score lik

2条回答
  •  庸人自扰
    2021-02-06 01:14

    matplotlib's PCA class doesn't include the Hotelling T2 calculation, but it can be done with just a couple lines of code. The following code includes a function to compute the T2 values for each point. The __main__ script applies PCA to the same example as used in Matlab's pca documentation, so you can verify that the function generates the same values as Matlab.

    from __future__ import print_function, division
    
    import numpy as np
    from matplotlib.mlab import PCA
    
    
    def hotelling_tsquared(pc):
        """`pc` should be the object returned by matplotlib.mlab.PCA()."""
        x = pc.a.T
        cov = pc.Wt.T.dot(np.diag(pc.s)).dot(pc.Wt) / (x.shape[1] - 1)
        w = np.linalg.solve(cov, x)
        t2 = (x * w).sum(axis=0)
        return t2
    
    
    if __name__ == "__main__":
    
        hald_text = """Y       X1      X2      X3      X4
        78.5    7       26      6       60
        74.3    1       29      15      52
        104.3   11      56      8       20
        87.6    11      31      8       47
        95.9    7       52      6       33
        109.2   11      55      9       22
        102.7   3       71      17      6
        72.5    1       31      22      44
        93.1    2       54      18      22
        115.9   21      47      4       26
        83.8    1       40      23      34
        113.3   11      66      9       12
        109.4   10      68      8       12
        """
        hald = np.loadtxt(hald_text.splitlines(), skiprows=1)
        ingredients = hald[:, 1:]
    
        pc = PCA(ingredients, standardize=False)
        coeff = pc.Wt
    
        np.set_printoptions(precision=4)
    
        # For coeff and latent, compare to
        #     http://www.mathworks.com/help/stats/pca.html#btjpztu-1
        print("coeff:")
        print(coeff)
        print()
    
        latent = pc.s / (ingredients.shape[0] - 1)
        print("latent:" + (" %9.4f"*len(latent)) % tuple(latent))
        print()
    
        # For tsquared, compare to
        #     http://www.mathworks.com/help/stats/pca.html#bti6r0c-1
        tsquared = hotelling_tsquared(pc)
        print("tsquared:")
        print(tsquared)
    

    Output:

    coeff:
    [[ 0.0678  0.6785 -0.029  -0.7309]
     [ 0.646   0.02   -0.7553  0.1085]
     [-0.5673  0.544  -0.4036  0.4684]
     [ 0.5062  0.4933  0.5156  0.4844]]
    
    latent:  517.7969   67.4964   12.4054    0.2372
    
    tsquared:
    [ 5.6803  3.0758  6.0002  2.6198  3.3681  0.5668  3.4818  3.9794  2.6086
      7.4818  4.183   2.2327  2.7216]
    

提交回复
热议问题