I\'m using a std::map
(VC++ implementation) and it\'s a little slow for lookups via the map\'s find method.
The key type is std::string
.
Where you have long common substrings, a trie might be a better data structure than a map or a hash_map. I said "might", though - a hash_map already only traverses the key once per lookup, so should be fairly fast. I won't discuss it further since others already have.
You could also consider a splay tree if some keys are more frequently looked up than others, but of course this makes the worst-case lookup worse than a balanced tree, and lookups are mutating operations, which may matter to you if you're using e.g. a reader-writer lock.
If you care about the performance of lookups more than modifications, you might do better with an AVL tree than a red-black, which I think is what STL implementations generally use for map. An AVL tree is typically better balanced and so will on average require fewer comparisons per lookup, but the difference is marginal.
Finding an implementation of these that you're happy with might be an issue. A search on the Boost main page suggests they have a splay and AVL tree but not a trie.
You mentioned in a comment that you never have a lookup that fails to find anything. So you could in theory skip the final comparison, which in a tree of 15 < 2^4 elements could give you something like a 20-25% speedup without doing anything else. In fact, maybe more than that, since equal strings are the slowest to compare. Whether it's worth writing your own container just for this optimisation is another question.
You might also consider locality of reference - I don't know whether you could avoid the occasional page miss by allocating the keys and the nodes out of a small heap. If you only need about 15 entries at a time, then assuming a file name limit below 256 bytes you could ensure that everything accessed during a lookup fits into a single 4k page (apart from the key being looked up, of course). It may be that comparing the strings is insignificant compared with a couple of page loads. However, if this is your bottleneck there must be an enormous number of lookups going on, so I'd guess that everything is reasonably close to the CPU. Worth checking, maybe.
Another thought: if you are using pessimistic locking on a structure where there's a lot of contention (you said in a comment the program is massively multi-threaded) then regardless of what the profiler tells you (what code the CPU cycles are spent in), it might be costing you more than you think by effectively limiting you to 1 core. Try a reader-writer lock?