Use sklearn TfidfVectorizer with already tokenized inputs?

后端 未结 3 553
闹比i
闹比i 2021-02-05 14:29

I have a list of tokenized sentences and would like to fit a tfidf Vectorizer. I tried the following:

tokenized_list_of_sentences = [[\'this\', \'is\', \'one\'],         


        
3条回答
  •  借酒劲吻你
    2021-02-05 15:03

    Try preprocessor instead of tokenizer.

        return lambda x: strip_accents(x.lower())
    AttributeError: 'list' object has no attribute 'lower'
    

    If x in the above error message is a list, then doing x.lower() to a list will throw the error.

    Your two examples are all stopwords so to make this example return something, throw in a few random words. Here's an example:

    tokenized_sentences = [['this', 'is', 'one', 'cat', 'or', 'dog'],
                           ['this', 'is', 'another', 'dog']]
    
    tfidf = TfidfVectorizer(preprocessor=' '.join, stop_words='english')
    tfidf.fit_transform(tokenized_sentences)
    

    Returns:

    <2x2 sparse matrix of type ''
        with 3 stored elements in Compressed Sparse Row format>
    

    Features:

    >>> tfidf.get_feature_names()
    ['cat', 'dog']
    

    UPDATE: maybe use lambdas on tokenizer and preprocessor?

    tokenized_sentences = [['this', 'is', 'one', 'cat', 'or', 'dog'],
                           ['this', 'is', 'another', 'dog']]
    
    tfidf = TfidfVectorizer(tokenizer=lambda x: x,
                            preprocessor=lambda x: x, stop_words='english')
    tfidf.fit_transform(tokenized_sentences)
    
    <2x2 sparse matrix of type ''
        with 3 stored elements in Compressed Sparse Row format>
    >>> tfidf.get_feature_names()
    ['cat', 'dog']
    

提交回复
热议问题