I know this can be done by sorting the array and taking the larger numbers until the required condition is met. That would take at least nlog(n) sorting time.
Is there a
Here is an O(n) expected time solution to the problem. It's somewhat like Moron's idea but we don't throw out the work that our selection algorithm did in each step, and we start trying from an item potentially in the middle rather than using the repeated doubling approach.
Alternatively, It's really just quickselect with a little additional book keeping for the remaining sum.
First, it's clear that if you had the elements in sorted order, you could just pick the largest items first until you exceed the desired sum. Our solution is going to be like that, except we'll try as hard as we can to not to discover ordering information, because sorting is slow.
You want to be able to determine if a given value is the cut off. If we include that value and everything greater than it, we meet or exceed S, but when we remove it, then we are below S, then we are golden.
Here is the psuedo code, I didn't test it for edge cases, but this gets the idea across.
def Solve(arr, s):
# We could get rid of worse case O(n^2) behavior that basically never happens
# by selecting the median here deterministically, but in practice, the constant
# factor on the algorithm will be much worse.
p = random_element(arr)
left_arr, right_arr = partition(arr, p)
# assume p is in neither left_arr nor right_arr
right_sum = sum(right_arr)
if right_sum + p >= s:
if right_sum < s:
# solved it, p forms the cut off
return len(right_arr) + 1
# took too much, at least we eliminated left_arr and p
return Solve(right_arr, s)
else:
# didn't take enough yet, include all elements from and eliminate right_arr and p
return len(right_arr) + 1 + Solve(left_arr, s - right_sum - p)