A lot of times, I have a big dataframe df
to hold the basic data, and need to create many more columns to hold the derivative data calculated by basic data columns.
Starting in 0.13 (releasing very soon), you can do something like this. This is using generators to evaluate a dynamic formula. In-line assignment via eval will be an additional feature in 0.13, see here
In [19]: df = DataFrame(randn(5, 2), columns=['a', 'b'])
In [20]: df
Out[20]:
a b
0 -1.949107 -0.763762
1 -0.382173 -0.970349
2 0.202116 0.094344
3 -1.225579 -0.447545
4 1.739508 -0.400829
In [21]: formulas = [ ('c','a+b'), ('d', 'a*c')]
Create a generator that evaluates a formula using eval
; assigns the result, then yields the result.
In [22]: def lazy(x, formulas):
....: for col, f in formulas:
....: x[col] = x.eval(f)
....: yield x
....:
In action
In [23]: gen = lazy(df,formulas)
In [24]: gen.next()
Out[24]:
a b c
0 -1.949107 -0.763762 -2.712869
1 -0.382173 -0.970349 -1.352522
2 0.202116 0.094344 0.296459
3 -1.225579 -0.447545 -1.673123
4 1.739508 -0.400829 1.338679
In [25]: gen.next()
Out[25]:
a b c d
0 -1.949107 -0.763762 -2.712869 5.287670
1 -0.382173 -0.970349 -1.352522 0.516897
2 0.202116 0.094344 0.296459 0.059919
3 -1.225579 -0.447545 -1.673123 2.050545
4 1.739508 -0.400829 1.338679 2.328644
So its user determined ordering for the evaluation (and not on-demand). In theory numba
is going to support this, so pandas possibly support this as a backend for eval
(which currently uses numexpr for immediate evaluation).
my 2c.
lazy evaluation is nice, but can easily be achived by using python's own continuation/generate features, so building it into pandas, while possible, is quite tricky, and would need a really nice usecase to be generally useful.