I\'m trying to devise a method for generating random 2D convex polygons. It has to have the following properties:
Following @Mangara answer there is JAVA implementation, if someone is interested in Python port of it
import random
from math import atan2
def to_convex_contour(vertices_count,
x_generator=random.random,
y_generator=random.random):
"""
Port of Valtr algorithm by Sander Verdonschot.
Reference:
http://cglab.ca/~sander/misc/ConvexGeneration/ValtrAlgorithm.java
>>> contour = to_convex_contour(20)
>>> len(contour) == 20
True
"""
xs = [x_generator() for _ in range(vertices_count)]
ys = [y_generator() for _ in range(vertices_count)]
xs = sorted(xs)
ys = sorted(ys)
min_x, *xs, max_x = xs
min_y, *ys, max_y = ys
vectors_xs = _to_vectors_coordinates(xs, min_x, max_x)
vectors_ys = _to_vectors_coordinates(ys, min_y, max_y)
random.shuffle(vectors_ys)
def to_vector_angle(vector):
x, y = vector
return atan2(y, x)
vectors = sorted(zip(vectors_xs, vectors_ys),
key=to_vector_angle)
point_x = point_y = 0
min_polygon_x = min_polygon_y = 0
points = []
for vector_x, vector_y in vectors:
points.append((point_x, point_y))
point_x += vector_x
point_y += vector_y
min_polygon_x = min(min_polygon_x, point_x)
min_polygon_y = min(min_polygon_y, point_y)
shift_x, shift_y = min_x - min_polygon_x, min_y - min_polygon_y
return [(point_x + shift_x, point_y + shift_y)
for point_x, point_y in points]
def _to_vectors_coordinates(coordinates, min_coordinate, max_coordinate):
last_min = last_max = min_coordinate
result = []
for coordinate in coordinates:
if _to_random_boolean():
result.append(coordinate - last_min)
last_min = coordinate
else:
result.append(last_max - coordinate)
last_max = coordinate
result.extend((max_coordinate - last_min,
last_max - max_coordinate))
return result
def _to_random_boolean():
return random.getrandbits(1)