I am curious to know what is the reasoning that could overweighs towards using a self-balancing tree technique to store items than using a hash table.
I see that hash
A few reasons I can think of:
Trees are dynamic (the space complexity is N), whereas hash tables are often implemented as arrays which are fixed size, which means they will often be initialized with K size, where K > N, so even if you only have 1 element in a hashmap, you might still have 100 empty slots that take up memory. Another effect of this is:
Increasing the size of an array-based hash table is costly (O(N) average time, O(N log N) worst case), whereas trees can grow in constant time (O(1)) + (time to locate insertion point (O(log N))
Both self-balanced trees and hashmaps have a worst-case efficiency of O(log N) in the best worst-case (assuming that the hashmap does handle colissions), but Hashmaps can have a better average-case performance (often close to O(1)), whereas Trees will have a constant O(log N). This is because even thou a hashmap can locate the insertion index in O(1), it has to account for hash colissions (more than one element hashing to the same array index), and thus in the best case degrades to a self-balanced tree (such as the Java implementation of hashmap), that is, each element in the hashmap can be implemented as a self-balanced tree, storing all elements which has hashed to the given array cell.