When you want to pull an element out of a data structure, you have to give its index. But the meaning of index depends on the data structure itself.
cla
It seems like the index into the type is an index into the set of constructors, following by an index into the product representing that constructor. This can be implemented quite naturally with e.g. generics-sop.
First you need a datatype to represent possible indices into a single element of the product. This could be an index pointing to an element of type a
,
or an index pointing to something of type g b
- which requires an index pointing into g
and an index pointing to an element of type a
in b
. This is encoded with the following type:
import Generics.SOP
data ArgIx f x x' where
Here :: ArgIx f x x
There :: (Generic (g x')) => Ix g -> ArgIx f x x' -> ArgIx f x (g x')
newtype Ix f = ...
The index itself is just a sum (implemented by NS
for n-ary sum) of sums over the generic representation of the type (choice of constructor, choice of constructor element):
newtype Ix f = MkIx (forall x . NS (NS (ArgIx f x)) (Code (f x)))
You can write smart constructors for various indices:
listIx :: Natural -> Ix []
listIx 0 = MkIx $ S $ Z $ Z Here
listIx k = MkIx $ S $ Z $ S $ Z $ There (listIx (k-1)) Here
treeIx :: [Bool] -> Ix Tree
treeIx [] = MkIx $ S $ Z $ S $ Z Here
treeIx (b:bs) =
case b of
True -> MkIx $ S $ Z $ Z $ There (treeIx bs) Here
False -> MkIx $ S $ Z $ S $ S $ Z $ There (treeIx bs) Here
roseIx :: [Natural] -> Ix Rose
roseIx [] = MkIx $ Z $ Z Here
roseIx (k:ks) = MkIx $ Z $ S $ Z $ There (listIx k) (There (roseIx ks) Here)
Note that e.g. in the list case, you cannot construct an (non-bottom) index pointing to the []
constructor - likewise for Tree
and Empty
, or constructors containing values whose type is not a
or something containing some values of type a
. The quantification in MkIx
prevents the construction bad things like an index pointing to the first Int
in data X x = X Int x
where x
is instantiated to Int
.
The implementation of the index function is fairly straightforward, even if the types are scary:
(!) :: (Generic (f x)) => f x -> Ix f -> Maybe x
(!) arg (MkIx ix) = go (unSOP $ from arg) ix where
atIx :: a -> ArgIx f x a -> Maybe x
atIx a Here = Just a
atIx a (There ix0 ix1) = a ! ix0 >>= flip atIx ix1
go :: (All SListI xss) => NS (NP I) xss -> NS (NS (ArgIx f x)) xss -> Maybe x
go (Z a) (Z b) = hcollapse $ hzipWith (\(I x) -> K . atIx x) a b
go (S x) (S x') = go x x'
go Z{} S{} = Nothing
go S{} Z{} = Nothing
The go
function compares the constructor pointed to by the index and the actual constructor used by the type. If the constructors don't match, the indexing returns Nothing
. If they do, the actual indexing is done - which is trivial in the case that the index points exactly Here
, and in the case of some substructure, both indexing operations must succeed one after the other, which is handled by >>=
.
And a simple test:
>map (("hello" !) . listIx) [0..5]
[Just 'h',Just 'e',Just 'l',Just 'l',Just 'o',Nothing]