I am using SciPy\'s boxcox function to perform a Box-Cox transformation on a continuous variable.
from scipy.stats import boxcox
import numpy as np
y = np.random
SciPy has added an inverse Box-Cox transformation.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox.html
scipy.special.inv_boxcox scipy.special.inv_boxcox(y, lmbda) =
Compute the inverse of the Box-Cox transformation.
Find x such that:
y = (x**lmbda - 1) / lmbda if lmbda != 0
log(x) if lmbda == 0
Parameters: y : array_like
Data to be transformed.
lmbda : array_like
Power parameter of the Box-Cox transform.
Returns:
x : array
Transformed data.
Notes
New in version 0.16.0.
Example:
from scipy.special import boxcox, inv_boxcox
y = boxcox([1, 4, 10], 2.5)
inv_boxcox(y, 2.5)
output: array([1., 4., 10.])