According to MSDN, Monitor.Wait()
:
Releases the lock on an object and blocks the current thread until it reacquires the lock.
I myself had this same doubt, and despite some interesting answers (some of them present here), I still kept searching for a more convincing answer.
I think an interesting and simple thought on this matter would be: I can call Monitor.Wait(lockObj) at a particular moment in which no other thread is waiting to acquire a lock on the lockObj object. I just want to wait for something to happen (some object's state to change, for instance), which is something I know that will happen eventually, on some other thread. As soon as this condition is achieved, I want to be able to reacquire the lock as soon as the other thread releases its lock.
By the definition of the Monitor.Wait method, it releases the lock and tries to acquire it again. If it didn't wait for the Monitor.Pulse method to be called before trying to acquire the lock again, it would simply release the lock and immediately acquire it again (depending on your code, possibly in loop).
That is, I think it's interesting trying to understand the need of the Monitor.Pulse method by looking at its usefulness in the functioning of the Monitor.Wait method.
Think like this: "I don't want to release this lock and immediately try to acquire it again, because I DON'T WANT to be ME the next thread to acquire this lock. And I also don't want to stay in a loop containing a call to Thread.Sleep checking some flag or something in order to know when the condition I'm waiting for has been achieved so that I can try to reacquire the lock. I just want to 'hibernate' and be awaken automatically, as soon as someone tells me the condition I'm waiting for has been achieved.".