I\'m trying to update a couple fields at once - I have two data sources and I\'m trying to reconcile them. I know I could do some ugly merging and then delete columns, but was
you want to replace
print df.loc[df['Col1'].isnull(),['Col1','Col2', 'Col3']]
Col1 Col2 Col3
2 NaN NaN NaN
3 NaN NaN NaN
With:
replace_with_this = df.loc[df['Col1'].isnull(),['col1_v2','col2_v2', 'col3_v2']]
print replace_with_this
col1_v2 col2_v2 col3_v2
2 a b d
3 d e f
Seems reasonable. However, when you do the assignment, you need to account for index alignment, which includes columns.
So, this should work:
df.loc[df['Col1'].isnull(),['Col1','Col2', 'Col3']] = replace_with_this.values
print df
Col1 Col2 Col3 col1_v2 col2_v2 col3_v2
0 A B C NaN NaN NaN
1 D E F NaN NaN NaN
2 a b d a b d
3 d e f d e f
I accounted for columns by using .values
at the end. This stripped the column information from the replace_with_this
dataframe and just used the values in the appropriate positions.