I want to convert a table, represented as a list of lists, into a Pandas DataFrame
. As an extremely simplified example:
a = [[\'a\', \'1.2\', \'
Starting pandas 1.0.0, we have pandas.DataFrame.convert_dtypes
. You can even control what types to convert!
In [40]: df = pd.DataFrame(
...: {
...: "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")),
...: "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")),
...: "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")),
...: "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")),
...: "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")),
...: "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")),
...: }
...: )
In [41]: dff = df.copy()
In [42]: df
Out[42]:
a b c d e f
0 1 x True h 10.0 NaN
1 2 y False i NaN 100.5
2 3 z NaN NaN 20.0 200.0
In [43]: df.dtypes
Out[43]:
a int32
b object
c object
d object
e float64
f float64
dtype: object
In [44]: df = df.convert_dtypes()
In [45]: df.dtypes
Out[45]:
a Int32
b string
c boolean
d string
e Int64
f float64
dtype: object
In [46]: dff = dff.convert_dtypes(convert_boolean = False)
In [47]: dff.dtypes
Out[47]:
a Int32
b string
c object
d string
e Int64
f float64
dtype: object