for example,if i have number 64,then its binary representation would be 0000 0000 0000 0000 0000 0000 0100 0000 so leading number of zero\'s is 25. remember i have to calculate
See here for the 32-bit version and other great bit-twiddling hacks.
// this is like doing a sign-extension
// if original value was 0x00.01yyy..y
// then afterwards will be 0x00.01111111
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
x |= (x >> 32);
and after that you just need to return 64 - numOnes(x). A simple way to do that is numOnes32(x) + numOnes32(x >> 32) where numOnes32 is defined as:
int numOnes32(unsigned int x) {
x -= ((x >> 1) & 0x55555555);
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
x = (((x >> 4) + x) & 0x0f0f0f0f);
x += (x >> 8);
x += (x >> 16);
return(x & 0x0000003f);
}
I haven't tried out this code, but this should do numOnes64 directly (in less time):
int numOnes64(unsigned long int x) {
x = ((x >> 1) & 0x5555555555555555L) + (x & 0x5555555555555555L);
x = ((x >> 2) & 0x3333333333333333L) + (x & 0x3333333333333333L);
// collapse:
unsigned int v = (unsigned int) ((x >>> 32) + x);
v = ((v >> 4) + v) & 0x0f0f0f0f) + (v & 0x0f0f0f0f);
v = ((v >> 8) & 0x00ff00ff) + (v & 0x00ff00ff);
return ((v >> 16) & 0x0000ffff) + (v & 0x0000ffff);
}