Project Euler #1 in Java

前端 未结 8 1640
旧时难觅i
旧时难觅i 2021-02-04 18:22

I\'m having problems with this code. I don\'t want to look at others, so I\'m wondering what\'s wrong with mine.

If we list all the natural numbers below 10 that are mu

8条回答
  •  鱼传尺愫
    2021-02-04 18:57

    Solutions

    1) O(n):

    A small improvement for the other answers (i can start from 3):

    public static void main(String[] args) {
        int sum = 0;
        for (int i = 3; i < 1000; i++) {
            if (i % 3 == 0 || i % 5 == 0) {
                sum += i;
            }
        }
        System.out.println(sum);
    }
    

    For a bigger input number ( Integer.MAX_VALUE instead of 1000 ) it takes:

    • 195 seconds

    2) O(n) = O(n/3) + O(n/5) + O(n/15):

    This is more efficient and uses your initial approach (remove numbers that were taken twice):

    public static void main(String[] args) {
        long sum = 0 ;
        for ( long i = 3 ; i < 1000 ; i+=3 ){
            sum+=i;
        }
        for ( long i = 5 ; i < 1000 ; i+=5 ){
            sum+=i;
        }       
        for ( long i = 15 ; i < 1000 ; i+=15 ){
            sum-=i;
        }
        System.out.println(sum);
    }
    

    In the first case we have about n (1000) values for i, in the second case we have only about n/3 + n/5 + n/15 (600) values for i. The second one is also better because there are fewer comparisons ( no if involved ).

    For a bigger input number ( Integer.MAX_VALUE instead of 1000 ) it takes:

    • 9 seconds

    3) O(1):

    This solution is based on the following observation:

    1 + 2 + ... + n = n*(n+1)/2

    public static void main(String[] args) {
        int nr = 1000;
        nr--;
        int x3 = nr/3;
        int x5 = nr/5;
        int x15 = nr/15;
        
        long sum1 = 3*x3*(x3+1); 
        long sum2 = 5*x5*(x5+1);
        long sum3 = 15*x15*(x15+1);
        
        long sum = (sum1+sum2-sum3)/2;
        System.out.println(sum);
    }
    

    In this case, even if the input is Integer.MAX_VALUE, the computation is very fast ( less than 1 ms ).

提交回复
热议问题