How to fork/parallelize process in purrr::pmap

后端 未结 1 1525
我寻月下人不归
我寻月下人不归 2021-02-04 17:02

I have the following code that does serial processing with purr::pmap


library(tidyverse)

set.seed(1)
params         


        
1条回答
  •  故里飘歌
    2021-02-04 17:40

    In short: a "parallel pmap()", allowing a similar syntax to pmap(), could look like: lift(mcmapply)() or lift(clusterMap)().


    If you're not on Windows, you could:

    library(parallel)
    
    # forking
    
    set.seed(1, "L'Ecuyer")
    params %>% 
      lift(mcmapply, mc.cores = detectCores() - 1)(FUN = rnorm)
    
    # [[1]]
    # [1] 4.514604
    # 
    # [[2]]
    # [1] 0.7022156 0.8734875 5.0250478
    # 
    # [[3]]
    # [1]   8.7704060  11.7217925 -12.8776289 -10.7466152   0.5177089
    

    Edit

    Here is a "cleaner" option, that should feel more like using pmap:

    nc <- max(parallel::detectCores() - 1, 1L)
    
    par_pmap <- function(.l, .f, ..., mc.cores = getOption("mc.cores", 2L)) {
      do.call(
        parallel::mcmapply, 
        c(.l, list(FUN = .f, MoreArgs = list(...), SIMPLIFY = FALSE, mc.cores = mc.cores))
      )
    }
    
    f <- function(n, mean, sd, ...) rnorm(n, mean, sd) 
    
    params %>% 
      par_pmap(f, some_other_arg_to_f = "foo", mc.cores = nc)
    

    If you're on Windows (or any other OS), you could:

    library(parallel)
    
    # (Parallel SOCKet cluster)
    
    cl <- makeCluster(detectCores() - 1)
    
    clusterSetRNGStream(cl, 1)
    params %>% 
      lift(clusterMap, cl = cl)(fun = rnorm)
    
    # [[1]]
    # [1] 5.460811
    # 
    # [[2]]
    # [1] 7.573021 6.870994 5.633097
    # 
    # [[3]]
    # [1] -21.595569 -21.253025 -12.949904  -4.817278  -7.650049
    
    stopCluster(cl)
    

    In case you're more inclined to use foreach, you could:

    library(doParallel)
    
    # (fork by default on my Linux machine, should PSOCK by default on Windows)
    
    registerDoParallel(cores = detectCores() - 1)
    
    set.seed(1, "L'Ecuyer")
    lift(foreach)(params) %dopar%
      rnorm(n, mean, sd)
    
    # [[1]]
    # [1] 4.514604
    # 
    # [[2]]
    # [1] 0.7022156 0.8734875 5.0250478
    # 
    # [[3]]
    # [1]   8.7704060  11.7217925 -12.8776289 -10.7466152   0.5177089
    
    stopImplicitCluster()
    

    0 讨论(0)
提交回复
热议问题