Fellow programmers,
I know this is a little outside your juridistiction, but I was wondering perhaps if you have time, if you could help me with one \"procedure\". Not i
I'm new to stack overflow but this is a problem I have worked on quite a bit and thought I would post an alternate approach to the problem. This approach uses the concept of a Voronoi diagram: http://en.wikipedia.org/wiki/Voronoi_diagram Essentially, a map is created which divides the space into regions containing one of the input points (x,y of your airfoil). The important part here is that any point within the region is closest to the input point in that region. The nodes created by this space division are equidistant to at least three of the input points.
Here is the interesting part: three equidistant points from a center point can be used to create a circle. As you mentioned, inscribed circle center points are used to draw the mean camber line because the inscribed circle measures the thickness.
We are close now. The nature of the voronoi diagram in this application means that any voronoi node inside of our airfoil region is the center point of one of these "thickness circles." (This runs into some issue very close to the LE and TE depending on your data. I usually apply some filtering here).
Basic Structure:
Create Voronoi Diagram
Extract Voronoi Nodes
Determine Nodes Which Lie Within Airfoil
Construct Mean Camber Line From Interior Nodes
Most of my work is in Matlab which has built in voronoi and inpolygon functions. As such, I'm not a huge help in developing those functions but they should be well documented elsewhere.
Trailing Edge/Leading Edge Issues
As I am sure you have experienced or know, it is difficult to measure thickness well when close to the LE/TE. This approach will contruct a fork in the nodes when the thickness circle is less than the edge radius. A check of the data for this fork will find the points which are false for the camber line. To construct the camber line all the way to the edge of the foil you could extrapolate your camber line (2nd or 3rd order should be fine) and find the intersection.