I am trying to use HBase as a data source for spark. So the first step turns out to be creating a RDD from a HBase table. Since Spark works with hadoop input formats, i could fi
Here is an example of using Scan in Spark:
import java.io.{DataOutputStream, ByteArrayOutputStream}
import java.lang.String
import org.apache.hadoop.hbase.client.Scan
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Base64
def convertScanToString(scan: Scan): String = {
val out: ByteArrayOutputStream = new ByteArrayOutputStream
val dos: DataOutputStream = new DataOutputStream(out)
scan.write(dos)
Base64.encodeBytes(out.toByteArray)
}
val conf = HBaseConfiguration.create()
val scan = new Scan()
scan.setCaching(500)
scan.setCacheBlocks(false)
conf.set(TableInputFormat.INPUT_TABLE, "table_name")
conf.set(TableInputFormat.SCAN, convertScanToString(scan))
val rdd = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result])
rdd.count
You need to add related libraries to the Spark classpath and make sure they are compatible with your Spark. Tips: you can use hbase classpath
to find them.