I\'m running Keras model.fit() in Jupyter notebook, and the output is very messy if verbose is set to 1:
Train on 6400 samples, validate on 800 samples
E
You can try the Keras-adapted version of the TQDM progress bar library.
The usage instructions can be brought down to:
install e.g. per pip install keras-tqdm
(stable) or pip install git+https://github.com/bstriner/keras-tqdm.git
(for latest dev-version)
import the callback function with from keras_tqdm import TQDMNotebookCallback
run Keras' fit
or fit_generator
with verbose=0
or verbose=2
settings, but with a callback to the imported TQDMNotebookCallback
, e.g. model.fit(X_train, Y_train, verbose=0, callbacks=[TQDMNotebookCallback()])
The result: