I\'ve designed a function to compute the mean of a list. Although it works fine, but I think it may not be the best solution due to it takes two functions rather than one. Is it
About the best you can do is this version:
import qualified Data.Vector.Unboxed as U
data Pair = Pair {-# UNPACK #-}!Int {-# UNPACK #-}!Double
mean :: U.Vector Double -> Double
mean xs = s / fromIntegral n
where
Pair n s = U.foldl' k (Pair 0 0) xs
k (Pair n s) x = Pair (n+1) (s+x)
main = print (mean $ U.enumFromN 1 (10^7))
It fuses to an optimal loop in Core (the best Haskell you could write):
main_$s$wfoldlM'_loop :: Int#
-> Double#
-> Double#
-> Int#
-> (# Int#, Double# #)
main_$s$wfoldlM'_loop =
\ (sc_s1nH :: Int#)
(sc1_s1nI :: Double#)
(sc2_s1nJ :: Double#)
(sc3_s1nK :: Int#) ->
case ># sc_s1nH 0 of _ {
False -> (# sc3_s1nK, sc2_s1nJ #);
True ->
main_$s$wfoldlM'_loop
(-# sc_s1nH 1)
(+## sc1_s1nI 1.0)
(+## sc2_s1nJ sc1_s1nI)
(+# sc3_s1nK 1)
}
And the following assembly:
Main_mainzuzdszdwfoldlMzqzuloop_info:
.Lc1pN:
testq %r14,%r14
jg .Lc1pQ
movq %rsi,%rbx
movsd %xmm6,%xmm5
jmp *(%rbp)
.Lc1pQ:
leaq 1(%rsi),%rax
movsd %xmm6,%xmm0
addsd %xmm5,%xmm0
movsd %xmm5,%xmm7
addsd .Ln1pS(%rip),%xmm7
decq %r14
movsd %xmm7,%xmm5
movsd %xmm0,%xmm6
movq %rax,%rsi
jmp Main_mainzuzdszdwfoldlMzqzuloop_info
Based on Data.Vector. For example,
$ ghc -Odph --make A.hs -fforce-recomp
[1 of 1] Compiling Main ( A.hs, A.o )
Linking A ...
$ time ./A
5000000.5
./A 0.04s user 0.00s system 93% cpu 0.046 total
See the efficient implementations in the statistics package.