Should we parallelize a DataFrame like we parallelize a Seq before training

前端 未结 2 744
无人及你
无人及你 2021-02-04 10:11

Consider the code given here,

https://spark.apache.org/docs/1.2.0/ml-guide.html

import org.apache.spark.ml.classification.LogisticRegression
val training         


        
2条回答
  •  盖世英雄少女心
    2021-02-04 10:25

    DataFrame is a distributed data structure. It is neither required nor possible to parallelize it. SparkConext.parallelize method is used only to distributed local data structures which reside in the driver memory. You shouldn't be used to distributed large datasets not to mention redistributing RDDs or higher level data structures (like you do in your previous question)

    sc.parallelize(trainingData.collect()) 
    

    If you want to convert between RDD / Dataframe (Dataset) use methods which are designed to do it:

    1. from DataFrame to RDD:

      import org.apache.spark.sql.DataFrame
      import org.apache.spark.sql.Row
      import org.apache.spark.rdd.RDD
      
      val df: DataFrame  = Seq(("foo", 1), ("bar", 2)).toDF("k", "v")
      val rdd: RDD[Row] = df.rdd
      
    2. form RDD to DataFrame:

      val rdd: RDD[(String, Int)] = sc.parallelize(Seq(("foo", 1), ("bar", 2)))
      val df1: DataFrame = rdd.toDF
      // or
      val df2: DataFrame = spark.createDataFrame(rdd) // From 1.x use sqlContext
      

提交回复
热议问题