I have a few datapoints (x and y) that seem to have a logarithmic relationship.
> mydata
x y
1 0 123
2 2 116
3 4 113
4 15 100
5 48 87
6 75 84
Try taking the log of your response variable and then using lm
to fit a linear model:
fit <- lm(log(y) ~ x, data=mydata)
The adjusted R-squared is 0.8486, which at face value isn't bad. You can look at the fit using plot, for example:
plot(fit, which=2)
But perhaps, it's not such a good fit after all:
last_plot() + geom_line(aes(x=x, y=exp(fit$fitted.values)))