Equivalent of transform in R/ddply in Python/pandas?

前端 未结 1 1348
误落风尘
误落风尘 2021-02-04 08:45

In R\'s ddply function, you can compute any new columns group-wise, and append the result to the original dataframe, such as:

ddply(mtcars, .(cyl), transform, n=         


        
1条回答
  •  鱼传尺愫
    2021-02-04 08:59

    You can add a column to a DataFrame by assigning the result of a groupby/transform operation to it:

    mtcars['n'] = mtcars.groupby("cyl")['cyl'].transform('count')
    

    import pandas as pd
    import pandas.rpy.common as com
    
    mtcars = com.load_data('mtcars')
    mtcars['n'] = mtcars.groupby("cyl")['cyl'].transform('count')
    print(mtcars.head())
    

    yields

                        mpg  cyl  disp   hp  drat     wt   qsec  vs  am  gear  carb   n
    Mazda RX4          21.0    6   160  110  3.90  2.620  16.46   0   1     4     4   7
    Mazda RX4 Wag      21.0    6   160  110  3.90  2.875  17.02   0   1     4     4   7
    Datsun 710         22.8    4   108   93  3.85  2.320  18.61   1   1     4     1  11
    Hornet 4 Drive     21.4    6   258  110  3.08  3.215  19.44   1   0     3     1   7
    Hornet Sportabout  18.7    8   360  175  3.15  3.440  17.02   0   0     3     2  14
    

    To add multiple columns, you could use groupby/apply. Make sure the function you apply returns a DataFrame with the same index as its input. For example,

    mtcars[['n','total_wt']] = mtcars.groupby("cyl").apply(
        lambda x: pd.DataFrame({'n': len(x['cyl']), 'total_wt': x['wt'].sum()},
                               index=x.index))
    print(mtcars.head())
    

    yields

                        mpg  cyl  disp   hp  drat     wt   qsec  vs  am  gear  carb   n  total_wt
    Mazda RX4          21.0    6   160  110  3.90  2.620  16.46   0   1     4     4   7    21.820
    Mazda RX4 Wag      21.0    6   160  110  3.90  2.875  17.02   0   1     4     4   7    21.820
    Datsun 710         22.8    4   108   93  3.85  2.320  18.61   1   1     4     1  11    25.143
    Hornet 4 Drive     21.4    6   258  110  3.08  3.215  19.44   1   0     3     1   7    21.820
    Hornet Sportabout  18.7    8   360  175  3.15  3.440  17.02   0   0     3     2  14    55.989
    

    0 讨论(0)
提交回复
热议问题