In R\'s ddply function, you can compute any new columns group-wise, and append the result to the original dataframe, such as:
ddply(mtcars, .(cyl), transform, n=
You can add a column to a DataFrame by assigning the result of a groupby/transform operation to it:
mtcars['n'] = mtcars.groupby("cyl")['cyl'].transform('count')
import pandas as pd
import pandas.rpy.common as com
mtcars = com.load_data('mtcars')
mtcars['n'] = mtcars.groupby("cyl")['cyl'].transform('count')
print(mtcars.head())
yields
mpg cyl disp hp drat wt qsec vs am gear carb n
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 7
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 7
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 11
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 7
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 14
To add multiple columns, you could use groupby/apply
. Make sure the function you apply returns a DataFrame with the same index as its input. For example,
mtcars[['n','total_wt']] = mtcars.groupby("cyl").apply(
lambda x: pd.DataFrame({'n': len(x['cyl']), 'total_wt': x['wt'].sum()},
index=x.index))
print(mtcars.head())
yields
mpg cyl disp hp drat wt qsec vs am gear carb n total_wt
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 7 21.820
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 7 21.820
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 11 25.143
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 7 21.820
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 14 55.989