I have this code which generates power set of an array of size 4 (number is just example, less combinations to write...).
#define ARRAY_SIZE 4
unsigned int i,
Here's a version that goes down to the metal with bit-twiddling. It uses a modified version of the famous Hackers' Delight snoob() function that generates the next greater subset with the Same Number Of One Bits. See the Chess Programming Wiki (a source of many such bit-twiddling routines).
#include
#include
using U64 = uint64_t;
// print bit indices of x
void setPrint(U64 x)
{
std::cout << "{ ";
for(auto i = 1; x; x >>= 1, ++i)
if (x & 1) std::cout << i << ", ";
std::cout << "}\n";
}
// get next greater subset of set with
// Same Number Of One Bits
U64 snoob (U64 sub, U64 set) {
U64 tmp = sub-1;
U64 rip = set & (tmp + (sub & (0-sub)) - set);
for(sub = (tmp & sub) ^ rip; sub &= sub-1; rip ^= tmp, set ^= tmp)
tmp = set & (0-set);
return rip;
}
void generatePowerSet(unsigned n)
{
auto set = (1ULL << n) - 1; // n bits
for (unsigned i = 0; i < n+1; ++i) {
auto sub = (1ULL << i) - 1; // i bits
U64 x = sub; U64 y;
do {
setPrint(x);
y = snoob(x, set); // get next subset
x = y;
} while ((y > sub));
}
}
int main()
{
generatePowerSet(4);
}
Live Example with output in lexicographic order (bonus feature)
{ }
{ 1, }
{ 2, }
{ 3, }
{ 4, }
{ 1, 2, }
{ 1, 3, }
{ 2, 3, }
{ 1, 4, }
{ 2, 4, }
{ 3, 4, }
{ 1, 2, 3, }
{ 1, 2, 4, }
{ 1, 3, 4, }
{ 2, 3, 4, }
{ 1, 2, 3, 4, }